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DIGEST

The pas.t decade has witnessed the rapid assembly of rather large
body of data relating to the mechanical behavior and failure of materials
under extreme pressure, temperature and shear loading conditions. Al-
though this has led to a number of important phenomenological insights,
the molecular engineering of new materials with improved response and
strength characteristics in impeded by the absence of a fundamental under-
standing of the failure modes of substances subjected to these conditions.

For the past several years a group at the Vitreouis State Laboratory
of Catholic University of America has been engaged in the investigation of
the response of liquids and amorphous solids to large, rapidly imposed
disturbances. Initially our approach was to make use of Molecular Dynamics
(MD) experiment simulations to probe the microscopic origins and mechanisms
of certain anomalous macroscopic response features of liquids under such
conditions.

In its initial stages the work was focused on such non-linear visco-
elastic phenomena as shear viscosity thinning and stress overshoot under
conditions of large shearing rates. In carrying out this work it became
apparent that the behavior that was observed in the simple MD model system
(of point particles interacting via a Lennard-Jones 6-12 potential) were
quite general-having been seen in such diverse systems as organic lubri-
cants, polymers, metals, glasses and composites. In each of these cases,
the extant explanations of the behavior involved me~chanisms specific to the
particular structural, configurational, or bonding properties of the indi-
vidual systems; the MD data suggest that the origin of many of these obser-
vations can be understood in a more general fundamental way.

In particular, our studies showed that it is possible to rationalize
much of the behavior as a consequence of the strain-induced (or stress-in-
duced) structural changes that were observed to occu~.r in the MD experiments.
In the liquid and high temperature glass systems, for example, it was found
that large shear rates cause the development of locally organized anisotro-
pic structures in terms of which the dynamical pseudo-plastic behavior of
these materials can be understood. These structural changes result in a
limit to the steady-state stress that the material can support and offer a
framework for understanding the ductile failure process in these substances.

To complement the MD work a supporting experimental program was estab-
lished with in-house university funds. This joint experimental/MD effort
has proven to be unusually valuable both in assisting in the interpretation
of the data that is obtained, and in providing guidance for continuing studies.
It was found, for instance that effective viscosity data from both the MD
and laboratory experiments exhibited essentially the same dependence on im-
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posed strain rate and could be interpreted in terms of the same non-
linear viscoelastic response hypothesis. The analysis of the MD results
showed that the crucial material property in the data reduction can be
represented by a parameter that can be interpreted as the maximum steady-
st~ate stress that can be developed in the material under the application
of a uniform strain note. In the experimental work it was found that when
a material is subjected to a stress exceeding this value, it initially de-
forms plastically; however, as the stress is continued, this ductiln re-
sponse is arrested and the material fails in sudden fracture.

This transition of ductile flow to fracture occurs as the material
attempts to rearrange its structure to reduce the stress accompanying the
applied strain rate. When these structural changes cannot occur rapidly
enough to compensate for the development of stress levels in excess of the
limiting stress (initially conceived as :.he parameter used in fitting the
ND and experimental data), the material fractures spontaneously. The lim-
iting steady-state stress value ts therefore the actual cohesive strength
of the material.

In the MD studies of low-temperature glasses the imposition of large
strain rates causes initially a pseudo-plastic material response leading to
ductile failure; under confintement conditions the material then restructures
itself in a crystalline form with improved modulus and strength properties.
Some preliminary studies in a crystalline system suggest that qualitatively
similar behavior (the development of transient dislocations followed by re-
crystallization) occurs at elevated shear stress levels in crystals.



INTRODUCTION

This technical report presents the results of research in

the dynamical response of materials to large, suddenly applied

disturbances. The work reported herein was carried out under the

sponsorship of the Office of Naval Research Research (Contract

Numbers N00014-75-C-0856 and N00014-81-K-0296) and covers the

time period October 1, 1979 through May 31, 1981.

The body of the report consists of six sections. In the

first is presented a molecular dynamics (MD) investigatior -f the

non-linear shear response of a Lennard-Jones model system at

elevated pressures. Among the key results reported here are the

observations of "shear thinning" and "shear overshoot" effects at

high shear rates. These are accompanied by, and indeed are, a

consequence of dynamical strain-induced organization of the

liquid structure. In the second section, these data are com-

pared with results obtained in both inorganiz glass and polymeric

systems. While there are quantitative differences among the

various materials, several important features are qualitiatively

quite similar, indicating that the molecular dynamics studies

(where one is able to extract detailed microscopic information)

can be quite useful in the interpretation of phenomena observed

in "real materials." The third section continues this comparison

of the molecular dynamics "experimental results" with primary

laboratory data. In this work it is shown that the concept of

shear induced structural organization derived from the MD work can

be applied in characterizing and understanding the mechanical and

thermal responses of organic traction lubricants at high shearing

:7
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rates.

To interpret these results a model proposed by Bair and

Winer [S. Bair and W.O. Winer, ASME J. Lub. Tech. 100, 40,

(1979)] was generalized to provide a mathematical framework

in wnich to consider dynamical nonlinear viscoelasticity. This

constitutes the fourth section of the report. One of the key

features in this work is the identification of the dimensionless

quantity

X = 6T (G /o*)

(here • = strain rate, To = shear relaxation tirn&, Go = shear

rigidity modulus, and a* = maximum steady-state stress) as the

parameter governing the type of behavior, i.e., linear visco-

elastic, pseudoplastic, etc., that is observed. It was hypothe-

sized that for large x values ductile failure of the material

will be the result. In sections five and six, MD and primary

laboratory results obtained in such circumstances are given,

respectively. In these experiments low temperature glassy

materials for which T (and therefore x) is large were studied

and the predicted failure was indeed observed. In the MD work

the initial pseudoplastic response of the material gave way to

ductile failure in which the stress that was developed dropped

precipitously to zero. Under confinement conditions the continued

application of shear led to strain-induced crystallization as the

material restructured itself in a higher strength form.
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Section 1. Time dependent non-linear shear stress effects in simple
liquids: A molecular dynamics study.

by D. M. Reyes, J. J. Kim, C. J. Montrose
and T. A. Litovitz
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Time dependent nonlinear shear stress effects In simple
liquids: A molecular dynamics study')

0. M. Heyes, J. J. Kim,bl C. J. Montrose, and T. A. Litovitz

'itrrom .State Lehoratof>% Cethik, UnIerJity fAnwmew•k. Washington DA C 2004
(Reteived I? December 1979: accepted II July 1930)

The effects of large amplitude shearing rakt on 104 particle amorphous L4onnrdJonts systems have been
examined. A resolution of the structural and dynamicol properties reveals that there is a tendency for shee to
reorganize the liquid into laytrs to fitelitate flow avid henct reduce shear viscosity. The first steps have been
made to determine those physical phenomena that are necessary to develop a theory of .ime depel Int
nonlinear shear vlcoelaatic efihets The form of the distortion giving rise to nonlinear shear stresses is well
understood although its magnitude is intimately linked with parallel structural changes in an, at present.
intractable way,

I. INTRODUCTION Calculations were performed under steady state shear
conditions. In addition, the response of the system to aIn t rather wide variety of technological applications, time dependent strain rate was studied. These latter

e.g., elastohydrodynrmic lubrication, shock loading, calculations consisted of segments lasting for 898 time
fatigue, liquids and amorphous solids are subjected to steps. In each segment the same "large" strain rate
large shearing forces. The microscopic mechanisms c,, was pleruigtefrt iese n a an
that are of Importance in such nonlinear situations are taiwed for the next 450 steps, at which time it was sud-

not well understood. To attempt to gain some insights denly switched off and then held at wero for the remain-

into this phenomenon, a molecular dynamics (MD) in- den swithe off anthe hold a t a yste rop-

vectigation of the viscoelastic respoaie of liquids sub- der of the setrwient. The time dependent system prop-
ctito large sher vstolastin raespwaseufndiquidsksun - erties were averaged over approximately 20 such seg-jected to large shear strain rates was undertaken. ments in order to reduce the statistical noise.

We have used a modification of the normal MD pro- The segmented MD procedure was modified to allow
cedure in order to follow the response of the system to the response of the system to small shear strain rates
an applied perturbation. In the past, nonequilibrium 4,, to be followed. 5 The system was allowed to evolve
MD has been used to produce steady shear flow' in a from the same starting configurr.tion with and withoutnumber of ways. Ashurst and Hoover 2 sheared a molec- the perturbation. A great deal of the statistica' noise
ular system through theoaction of "fluid walls" on two was eliminated by subtracting at each time step the
opposite faces bf the MD cell. Their technique produces value for the property under examination of the undis-

surface effects which lead to an inhomogeneous material turbed system from that of the perturbed medium.

being sheared. This problem is largely eliminated by
the homogeneous shear method 3 (HSM), which uses pe- The MD cell contained 108 particles Interacting
riodic boundary conditions in all .lirections. A modifi- through the Lonnard-Jones (LJ) potential
cation of the HSM, similar to one proposed by Evans, 4
was used in these calculations. It enables a particular *(r) 4 4((/r)'] (t/') 1. (2)
strain rate to be established instantaneously. The un-
perturbed velocity of the real or image molecule i, i.e.,
v,, is altered to V, by applying a shear rate i,• so that The units of energy, length, and time used throughout
it only alters the x component of velocity this paper are c, a, and (m02 /E)tI respectively; m is

the pLrticle's mass. All other quantities are expressed
,in terms of these fundamental units. The equations of

V, v +,(1) motion were integrated using the Verlet algorithm' with
a time step having a typical duration of 0.005. The in-
teractions were truncated beyond r= 2. So. The system

where a, is the z coordinate of particle i measured from was investigated at an average temperature T of 0. 722
the center of the cubic MD cell of side length L. A (e/ks) and number densities p of 0.8442, 0.92862,
molecule that leaves the MD cell in the x direction is re- 1. 01304, and 1. 2663. Had each of the latter three states
introduced through the opposite face with the (x,)) coor- been achieved slowly, the system would have crystal-
dinates and velocity of its nearest displaced im.nug. All lized'; however, these states were in fact achieved by
the calculations were conducted isothermally by scaling suddenly (in one time step) reducing the volume of the
the v, to maintain the desired temperature. p = 0. 8442 system by 10%, 30%, and 50%, respectively.

This rapid donsification prohibited those structural re-
arrangements that are necessary for crystallization to
occur so that a "superdensified" liquid system was pro-

"Research supported in part by the office of Naval Research duced. Accumulation of the configurational averages
Contract No. N00014-75-C-0856. followed an initial equilibration period of several thou-

b)On leave from Korea Advanced Institute of Science, P. 0. sand time steps. The calculations were performed on a
Box 150 Chonguansui, SeOul, Koree. PDP 11/40 computer.

J. Chem, Phy. 73(8), 15 Oct. 1960 0021.-9069203167-1001,00 0 1960 American Institute of Physic 3967
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Me Heyes et at, Nonlinear shear in liquids

•j•LV ~~( o=-(/V)[1 t"••

Mratz (3)

005 ,- J where V is the volume of the MD cell which contains

/1 -1 it molecules; e,, is the a €ompenent of the velocity of the
ith particle relative to the imposed velocity; cti nd Al)
are the a and 0 components, respectively, of the vector

r,=r, -. r,, where r, defines the position of molecule f.

"0.00 Immediately after a strain rate i isn applied at time

t =-0, a liquid takes time to respoad structurally. As a

0 1 2 3 4 I result, at first the shear stress rises linearly with time
as in an elastic material

t o,,(h' = G;, i,.,1 (4)

FIG. 1. The tnme depeidenoe of the reduced shear stress
a, (W)/G. for the p . 1.01.^04 systems subjected to the following where G. is 'he shear rigidity modulus. Since a liquid
strain rate histcry: Ot) (, 0t•2.3. iq(t)-O, 2.3<t4.6;
stai !ate hitoy will not support a static stress (it will flow), the rate of

C-,0.179; .. 0.3584; and -, T.0.7 1e8. ascent of shear stress decreases until it reaches a
limiting value governed by the shear viscoeity il, I.e.,
So,(t - -)) This is illustrated in Fig. 1, which
shows the shear rate dependence of ov,(t)/G. for the p

We first discuss the nature of the relaxational pro- = 1.01304 state. Observe that the steady state stress

ceases that accompany a time varying large strain rate. does not increase in proportion to the shear rate, i.e.,

The segmented technique was used. Each segment con- the shear viscosity decreases with increasing shear

stated of continuous shear for 0 4 1t 2. 3. The system rate-so-called shear thinning. Table I reveals that

was then allowed to evolve in the absence of shear from this trend is manifest at all densities. This is strong

t%2.3 to t*4, , when the shear rate was again applied, evidence that, on shearing, structural changes are in-

The development of the stress tensor a is of particular duced In a liquid which alters its physical properties.

interest; the aP component of this was computed using A second experiment was carried out to probe the

the fornaulas viscosity behavior at high shear rates. For a given ,

TABLE 1. The density p and steady state shear rate 1,, dependence of the shear viscosity i,
normal pressure components P.,, configurational energy U, shear rigidity modulus G., and
strees-optloal coefficient CO. Values of G. obtained from Eq. (8) are given in parentheses.
The estimated maximum standard error Is ft 1011 at the lowest shear rate of each density.

P i P= PY, P. U0 G. COG.%$

0.8442 0.0 -2.70 0.8 0.8 0.8 -5.65 22.5
(23.7)

0.8442 0.0422 2.64 0.8 0.9 0.9 -5.64

0.8442 0.1686 2.54 1.0 0.9 1.0 -5.62
0.8442 0.3373 2.44 1.2 1.0 1.3 -5.58

0.8442 0.6745 2.12 1.6 1.4 1.7 -5.51 3.5
0.92882 0.0 -10 3.0 3.0 3.0 -6.05 33.4

(37.3)
0.92862 0.0435 7.4 3.0 2.9 3.0 -6.05

0.92862 0.1741 4.6 3.3 3.2 3. 1 -5.99

0.92862 0.3482 4.0 3.7 3.5 3.9 -5.91
0.92862 0.6963 3.3 4.4 4.2 4.7 -5.77 4.0

1.01304 0.0 -20 -1.0 <7.0 <7.0 <-6.36 46.9
(49.4)

1.01304 0.0896 12.5 7.0 8.4 7.0 -6.22 4.0
1.01304 0.1792 9.0 7.5 7.4 7.3 -6.14 4.0
1.01304 0.3584 5.7 8.3 7.9 8.4 -6.96 4.5
1.01304 0.7168 4.6 9.5 8.8 9.9 -5.75 5.0
1.2663 0.0 -200 <37 <37 <37 -4.5 123.8

(108.6)
1.2663 0.0483 104 40 36 36 -4.49
1.2663 0.1930 25 42 39 41 -3.94
1.2663 0.3861 16 45 43 45 -3.29

1.2663 0.7721 11 49 47 48 -2.68 8.5

J. Chem. Phys., Vol. 73. No. 8. 16 Octorw I=
12



Heys et elat: Nonlinear sheer in hquids 38

11 rmal pressure components Is longer than that of the shear
stress. No normal pressure overshoot Is present and a
P, overshoot is observed only when p ý 1,2663. Table

10- 1 reveals that the configurational energy per particle
AV M

A VV increases with shear rate. This is additional evidence
of structural alteration of the flulid to states which are

onlý energetically favorable in the presence of steady
shear flow.

7 The shear stress viscoelastictc behavior is usefully
cast in relaxation function formalism. The normalized
shear stress relaxation function C(t) has been evaluated

8 __, .from both the sheared and unsheared m.dia using the
0 1 2 3 4 5 aforementioned small perturbation technique. The

t change in shear strep.s 8o,,() following the application
1 16. 2, The time dependent normal pressure components for of a small strain rate 6i,, for the duration of one time
the slirai i'nte history of Fig. I and i - o. 7l$o, p - 1. 01304. step At at I' is given by C(I - t') as follows:

I-, M; ---- PWW. and . , P(tL.
8o.(t - tr) = G.6i.,,Atc( - t'), (7)

where C(0) = 1 and C(.-) = 0. The C(t - t') derived for the
the system was allowed to reach its steady state stress p= 1. 01304 state with i== 0.7168, taking time origins
value a,,, at which time, say P', a small increment in at $'=0. 16, 1.2, and 3.6, are shown in Fig. 3. At
shear rate 8 i,, was applied. The stress 8ajt(t) result- short times (I - t' _0. 2), all the C( - t') coincide, pre-
ing from the application of 8j, continuously from t' is sumably because this portion of stress decay is inertial
given by linear response theory as and results from small notions of molecules within the

free space of the random network structure. After this,
80'(t)-= JG. t" Ib .(t')C(t -t") , (5) the remaining portion of the stress decays more slowly

because it involves the structural rearrangement of the
where the relaxation function to be used in Eq. (5) is medium, requiring the participation of the cooperative
that characteristic of the sheared state (see below), motions of larger molecular groups. Figure 3 reveals
This leads directly to an alternate measurement of the thnt as shear stress increases, the more elouly decay-
shear viscosity at high shear rates: ing process progressively disappears. This has been

1=1m Ua.(t)/8 i. (6) observed experimentally$ and is further evidence of the
,. . structural changes that take place in the liquid at high

din this wanner, although lses pre- shear stresses to make shear flow easier. For the pThe values obtained in0.842isatenheefrm alCthowithh le0sspithi

cise, agree reasonably well v ith and follow qualitatively st 0.t8442 state, the form of C(m with at(= 0 in, within

the same trends as those showi, in Table I derived front statistical uncertainty, the same as that given by
7 s(1- =/•. Levesque, Verlet, and K'uhrd'lrvi. 1 1 The variation for

nonzero values of i,, is qualitatively the same as for the
The time evolution of the shear s'ress is also affected p = 1.01304 state, although the changes in the long-time

rather dramatically at the higher stear rates. In Fig. behavior are somewhat less pronounced.
I it can be seen that the shear stre3a rises to a peak
before descending to its steady-state value. This be-
havior is observed for shear rates such that inn/G. 1.
> 0.05; at lower shear rates no local maxima in the a,
versus t curves were discernible. One also finds that
upon cessation of the applied shear rate, the immediate C(t-t)
stress relaxation is faster for the more highly sheared 0.5
media. The rate of stress decay slows with time as the
equilibrium state is approached. We shall later consider
the possible microscopic origin of the shear thinning and
shear stress overshoot phenomena; before doing so, \,"

however, we mamine some of the other changes that oc- 0.0
cur in the system in response to the large and suddenly
appUed shear disturbances.

Each normal pressure component P. = -a,. rises 0.0 0.2 04 0.6

when the liquid is sheared. They reflect the structural
changes that the shear" forces introduce into the liquid. FIG. 3. mTe shear streas relxatiUo funotioi C(t-t') for the
TheP,,(t) of the p= 1. 01304, j,=0.718 state aregiven stateof YU. 2andtimeoriginar at---. re.Oe6 -- 0
in Fig. 2. The time scale of the development of the nor- -l.2t and -... P-3.6.

J. Chem. Phys.. V40. 73. No.8 15 October 1950
13
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1.0

C )n(x) A

C:.t) 5

6nl(y)

0.0

L .... L. ..... J n(z) 1

0.0 0.2 0.4 0.6
t

FlI. 4. The shene stress relaxation functions C(f) for the 0
sheared (-) and unshelired ( ----. portions of the segment for 0
the state p = 0. 92862, • 0.61M.

-01 1 I

A selection of the C(t) obtained at the other densities 0 1 2

in the steady state shear and zero shear portions of the
segment are presented in Figs. 4 and 5. Their forms FIG. 6. The excess directional number density functions 6n(a)
are consistent with the above interpretation. It is cer- foi- the p= 1.2663 and ; =0.7721 state.

'ainly not surprising that the characteristic response
functions are different for the highly stressed steady
state system as compared with the equilibrium system. We now turn to consider the nature of the structural

On fairly general grounds, one expects that the existence and dynamicrl changes that these large shear rates pro -

of large shear stresses in the liquid reflects the fact duý'e in the LJ liquids. For the purpose of investigating
that local structural distortions are present. That these shear-induced structural anisotropy, a directional prob-

should impact on the response characteristics of tile ability density function n(a) was defined: pL 2n(c,)da

liquid seems quite apparent. =- the probability of locating a particle in the plane lamina
(of thickness da and dimensions L X L) oriented normal

The values obtained for the shear rigidity modulus G.. to the a axis and located a perpendicular distance a
are presented in Table I, where they are compared with from a given particle. Structural anisotropy is then re-
the values derived using the expression of Zwanzig and vealed by examining 6n(a), the difference between n,W(a)
Mountainit: characterizing the sheared system and nz0(a) of the equi-

27( fd( librium system. In terms of the pair distribution func-
G. = pk•T + 1 -5P j drg'0 (r)(Wdo/dr) (8) tion this can be written as (for the a =z case, for ex-

ample)

In this equation g0(r) is the radial distribution function,
which was computed as a part of the MD runs at each 6n(z) =(/10) dxf dy [g.(r) -ge(r)] , (9)
density. Within the statistical uncertainties, G. was 0 0
found to be independent of the shear stress at a particu- where g3(r) is the pair distribution function for the
lar density. sheared system and g0(r) is the equilibr'ium radial dis-

tribution function. We have obtained the 6n(a) by com-
1.0 puting the average number of particles from a reference

particle in the distance range IxI to IxI + Ax (where Aix
was taken as L/200) selected from the N - 1 pRrticles in

C th6 reorientated MD cell. Figure 6 shows the 6n(a) un-
der the conditions p= 1.2663 and ,= 0.7721. Although

0.5- \1 the maximum disp!acement is 10% at most, there is
- evidence of a tendency of the molecules to reorder them-

selves into xy layers (layers normal to the velocity gra-
"dient). The xz shearing increases the probability of the
molecules in an xz plane being found at multiples of the

0.0 • "intermolecular diameter from each other in the z direc-
tion. It is energetically favorable for these layers to be

L 0 0 0.6 staggered in the y direction. Although not so well de-0.0 0.2 0.4 0.5 fined, these trends are present at the lower densities.

o hThe (grossly simplified) picture that emerges is one of
PIG. 5. The shear stress relaxation functions 0't) fol the corrugated sheets of atoms sliding past one another. A
sheared (-) and the unsheared ( ---- ) portions of the -tegmnent pictorial representation of this suggested structure is
for the state p-1. 2663, I=-0.7721. given in Fig. 7.

J. Chem. Phys., Vol. 73, No. 8, 15 October 1980
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Sl/L

k. [.,1(;. 8i. 1the trajectories of five molecules in the xx plane
during the P= 1.0t304 and i,,=0.7168 segment. The molecules
originated from within a xz slice of thickness '-L/'0 taken
through the center of the cell.

for a selection of the states are presented in Table Ii.FG. 7. A pictorial representation of the structural changesthat take place on going from an unsheared ta) to a sheared (b) The value of D. = 0. 032 for the unsheared liquid near the
state. Tahe arrows denote the line and plane of shear e triple point compares favorably with the value of 0. 033

previously obtained. to The 1), of the unsheared liquid

decrease by approximately an order of magnitude on in-
The structural reorganization results from the action creasing the density from p= 0. 8442 to 1. 2663. How-

of the imposed velocity profile which, at the shear rates ever, at larger shear rates the density has a diminish-
considered, dominates the molecular motion. This ,a ing influence on the diffusion coefficients. The high
well demcnstrated by the trajectory plots of Fig. 8, shear stresses enhance the fluidity and create a "liquid"
which show time-elapsed positions in the xz plane of a which has directionality. All the diffusion coefficient
selection of the particles from the p = 1. 01304 and • components rise with shear rate at a particular density

0. 7168 state. Major movements are confined to the because the structural reorganization that takes place on
line of shear, shearing apparently creates paths along which particles

can more readily move. The D) are typically two thirdsIt is to be expected that the effect of the shear should of the D, and D,, indicating that the self-diffusion is
not be confined to structural changes but must also alter favored in the shearing plane. Thus, paradoxically, al-
the self -diffusional dynamics of the molecules. To though structural aspects of the liquids under shear
assess this, the x, y, and z components of the mean present a more solid-like appearance, other more dy-
square displacements (r2.(I)), which exclude the imposed namically related properties such a. self-diffusion and
flow, have been calculated, i.e., shear viscosity manifest changes which are associated

N Iro' )'-]2 ) with enhanced fluidity.

""a (0 Another aspect of the shear induced structural Mistor-
The directional diffusion coefficients tion is presented by the 'Lime dependent pair radial dis-

tribution function g(r, t), which is conveniently decom-
posed into the following component configurational av-

TABLE 11. The density and shear rate depen- erages:
dence of the directional diffusion coefficients D. g (r, 1)= gor) W + /r')u,, (r, t) + (y2/r,)u,, (r, t)
obtained from the MD experiments using Eq. (10).
The results are taken from the unsheared And + (z2/r2 )tag(r, I) + (xz/r)u,#(r,t) +.... (11)
sheared portions of the segments. If f.5 (r, 1) is the average of ((r,,I3j,/r~j) in the radial

p i ; Dx D, D, element r - r + dr about a molecule i at time 1, then

0.8442 0.0 0.032 0.032 0.032 g..(r, /) 15.fl. (r, t)/(4vprpdr) ,
0.8442 0.6745 0.052 0.045 0. 05:
0.92862 0.0 0.018 0.018 0,018 3 if3,.(r,t)+,t.8(r,t)+ (1,I) , (12)
0.92862 0.6963 0.0,13 0.037 0.045 where a* and
1.01304 0.0 0.008 0.008 0.008
1. 01304 0.1792 0.02 0.014 U. 02 q.g(r, t) 1 5.f.(r, t)/(4 rpr'dr) ,
1.01304 0.3584 0.03 0.025 0.03
1.2663 0.0 0.0045 0.0045 0.00o4 5a~(', ), (13)
1.2063 0. 7721 0.045 0.03 0.03 where a

J. Chem. Phys., Vol. 73, No. 8, 15 October 1980
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stress to exceed its steady stalt value. The situatloa
is Isom'oe comnplicvitod than this sih )lpe explanation pre..
souts, however, because the overshool takes place at

2- Ltimes when a purely viscous model for shear stress is
J •not an entirely acceptable approximation.

) .Another probe into the time dependent structural
0 - ' changes associated with shear stress visc.ela.LIc.t, is

provided by the angular rotation function O(r) defined
below:

I 8(r)~ (x r 1 )/ r')IN , (14)

-4 . .... IJ L_ where the cross product is confined to the xz plane.
0 1 2 When a material is sheared, molecules observe their

neighbors rotate around them with an angular velocity
FIG. 9. 'The g(r) (.), (r) adgr) (...) el the such that on average b (r)= i,,/3. The time and radial
sheared minus the unsheared portions of the p -1. 01:10 1 and dependence of tf , function gives information about

0= 0. 7108 segmented calculation, hindered rotation and hence the nature of structural dis-
ruption associated with shear strers relaxation. Large
departures in b0") from it. continuum value of i,/3 in-

The f/.(r-, t) have been calculated at various times dicate major structural rearrangement at that intermo-
during the segment. The difference between the g,,. ()- 1) lecular separation. Figure 12 shows ý(r) averaged over
of the steady state sheared (p= 1.01304 and i,,= 0.7168) three time zones after the start of sleady shear in the
system and the unsheared system at the same density p- 1. 01304, i,,= 0. 7168 calculation. This and similar
6g,(r, I) is shown in Fig. 9. It reveals that shearing plots for the calculation involving a step in Mtrain only

produces a net movement of particles in each coordina- exhibit a spike in 9(") at r0 0.ý at times when the strain
tion shell towards the origin molecule. This is also il- rate has been turned off and which is clearly above the
lustrated by the difference between the pair distribution noise. This shows that the slowly decaying part of the
functions of the sheared and unsheared liquids shown in stress, after a change in applied strain rate, results
Fig. 10. from further rearrangements in the inside of the first

coordination shell, which presumably require reorgan-
The shear rate dependent g() at steady state of ization of the liquid structure before they can occur.

the p= 0.8442 system are compared with the spherically
averaged g(r, t) from these samples in Fig. 10. They The following discussion uses the MD results to evalu-
give convincing evidence of angular distortion in each ate models for nonlinear shear behavior.
coordination shell such that in the positive .xz quadrants Previous MD studies of this subject have used the
the inside of each shell is on average depleted of par- Ree-Eyring hyperbolic sine model 2 to fit the shear rate
ticles when compared with the unsheared liquid. In con- dependence of ?j. From simple activation energy con-
trast, the outside of each shell has an excess of mole- siderations the following relationship can be derived:
cules in the positive xz quadrants, when compared with
the unsheared medium. The opposite changes take place 1/l0 = slnh't(Cr)/(4a?) , (15)
in the negative quadrants, where 70 is the shear viscosity in the limit of zero

The time dependence of g.. (r, t) and g.A(r, t), shown shear rate. The relaxation time r characterizes the
in Fig. 11, reveal that structural reorganization having
the symmetry of shear (xz/r 2) is much faster than that
of (a0/r ) symmetry. Within the latter series, (XI/r1)
and (z /r) evolve more rapidly to their steady state
values than (y2/r 2). For example, when p= 1. 01304 and
i,.= 0. 7168, the former three averages have nearly 2
reached their steady state values by 1= 0. 25 whereas
that of the (y2/r 2 ) summation hardly differs from zero
by that time.

These observations suggest a possible mechanism
for the origin of the btress overshoot. When a liquid is
sheared, the shearing forces alter its structure so that -2
the steady state stress attained corresponds to a new
lower viscosity, not that characterizing the starting 41I I I
liquid. At high rates of shear the structural evolution 2
necessary to attain this new viscosity is significantly
slower than the viscoelastic shear relaxation. Viewed FIG. 10. The shear rate dependence of g(r) and gX(r) for the
simply this means that the original viscosity can re- p= 0.B8442 states. ý,,0 (-l) •am0.1686 (..) cu=O. 3373
main for a sufficiently long time to enable the shear ( .... )- 'i=0.6745 (---.).
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FIG. 11. The functlonsg.0 (r.t) andgge(r.t) for the calculation of Fig. 10: (a) xx. (b) yy. (0) &a, (d) xz for the t-0.25 ( and
t=l.8 (-) states.

medium's unsheared state and is roughly an order of properties of a sheared liquid can be characterized by
magnitude larger than thp average shear relaxation time a quasielastic solid model in which the only nonequilib-
1= f' C(t)dt-= i 0/G.J. Although the model relates 7 to a rium property is a time dependent recoverable shear
flow volume V1 through the relationship

T"= % Vt2kB T,() .

T is usually taken as an adjustable parameter. Reason-
able fits to the MD results can be achieved by taking V1
= 1.1 independent of density. For example, for the p1
= 1. 01304 state, this provides better than 15% agree- 30
ment with the data; at the other densities the agreement
rarges from 13% to 18%. The general trends in the
plots of 7,/ri versus i,, at all densities suggest that thef disagreement is not totally statistical; the shear thinning
effect is systematically more pronounced (U. e., 1/%t
falls more rapidly) than Eq. (15) would predict. We also 0 -
note that the parameter r increases more rapidly with
density than does the shear relaxation time T.. At the
lowest density r/r, A, 20 whereas for the highest density.O.l
state r/7, x 100. 2

A perhaps more satisfying model has its basis in a r
trend in the shear' rate dependence of g,,(r, t), shown in FIG. 12. The normalized angular rotation function 3(rv)/i
Fig, 10. The magnitude of the angular distortion averaged over the time regions 0.17 to 0.33 (-). 1.54 to 2.05
roughly increases in p: aportion to the shear rate, as ( ----. . and 8.85 to 4.46 ( .... ) for the selmented p - 1. 01304
does the shear stress. This suggests that some of the and 0 o. 7166 calculstion.

J. Chem, Phys., Vol. 73, No. 6, IS October 1960
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(,)

-4 p2,... ,(I) f ," Y. ',.)V ,13 .1 /

g(r) (

and

2- 2 2 ~
'iP,, t -p lr A. A41 x (1) J Y 1- ---d , Y ... ( 1

where A., A,, :3/105, Al, - 1/1051; and Bi1 1 =B1 yz- 1/11¾
.2 ,i

Vhe' predictions for 6U,(i) at 1 4 PI',.(), using this
-4 m-- 1 j _J. model and I ihi , , n- i fr, -rn 1. 119), arc -evt.r;zd

0 1 2 ders of io, ijitude less than those obtained by MD. It is
thought that this is because the model only takes Into

FIU. 13. A comparison between the spherically averagted pair account those changes in "bulk" properties (e. g., U,
correlation functiong()') (-•, g.5 (r) ( .... anid - 2aoEri¶,/ar) and P..) which arise directly from distortion of the
( ... ) for the p= 1.2663 and "m0.0.18"3 state, liquid having g,, symmetry, Clear evidence nf other in-

duced strains, having g,, symmetry, has already been
presented. Although these are derived from the shear-

strain Ac,1 (). Such an approach2 is obtained front i ing action, they are not, at present, related to it in a
Taylor expa:sion of g(r, t): well defined way. It is apparent that in the MD results

the major source of the 8U0 and 6P., originates from

(r ) -- z , ')-- this latter structural alteration of the liquid which is not
Oxincorporated in the above model. The success of this

... • )theory for predicting shear stress follows from the rela-
+ 2"- () 8A'2-- +" (17) lively small change in g(r) that occurs on shearing the

fluids-even in the nonlinear region. In addition, the
Hen'e, recoverable shear strain (which can be considered to be

,,/ , x,4,( an expansion argument) induced is small (- 0.07). It
suggests that models characterizing the nonlinear shear

+ ((18) stress can be constructed using a recoverable shear
(8 ) strain as the only nonequilibrium parameter.

where go and g9' denote dgo/dr and d'go/dr2 , respective- The analysis in the preceding paragraph should be re-
ly. A comparison between Eqs. (11) and (18) reveals garded as a tentative hypothesis to be explored, rather
that than as a firm conclusion, It is not unreasonable to ex-

-44("(/)g0 = 1,x(r, t) . (19) pect that the shear induced changes 617, and 8P,, will

For most of the density/shear rate combinations stud-
ied, a A•E,(I) can always be chosen so that Eq. (19) is TABLE III. A comparison between
an excellent approximation. Good agreement for the p the fitted recoverable strain of Eq.
= 1. 2663 and i,.= 0. 048 calculation is illustrated In (19) and the equiva-ent elastic
Fig. 13. The go(r) was npproximated with little error modium strain ai./G..
by the spherically symmetrical g(r) of that calculation.
The recoverable strain necessary to satisfy Eq. (19) was ° A r,,lG.

found to be the Hooke's law strain (= ,,1/G.) to a good 0.9442 0.0422 0.005 0.005

approximation. Similar caiculattuns were performed 0.8442 0.1686 0.027 0.019
for the other states. The, go(r) were ten from the low- 0. 8442 0. 3373 0.037 0. 037f0.8442 0.6745 0.064 0.064

eat shear rate at each density or where possible from 0.92862 0.0435 0.01 0.01
the unsheared portion of the segment in non-steady state 0.92862 0.1741 0.026 0.024
calculations. Thi latter method was adopted in order 0.92862 0.3482 0.042 0.042
to explore a larger region of phase space th~a would be 0.92862 0.1;1963 0.069 0.069
possible with a single simulation at equilibrium, es- 1.01304 0.o U16 0.024 0.024
pecially at these high densities. The best fits for .t,, 1.01304 0. 1792 0.034 0.034
are again given with few exceptions by c,,/G., as Table 1.01304 0.3584 0.044 0.044

1. 01304 U. 71 (i, 0. 0-10 0.070
III reveals, 1..3 163 0.0.183 0. U41 0.041

Equations (17)-(19) also predict changes in the con- i. 2663 0.11930 0. 039 0.039

figurational parts of the total energy and normal pres- 1.2063 0.3861 0.046 0.050
1. 2663 0. 7721 0.051 0. 069

suro components that take the form 4,0 ...

J. Chem. Phys., Vol 73, No. 8, 16 October 1980
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Tl'e Sv (1) do not exhibit tie game stef inite time depen-
de lce as does the ama=(/). Tile latter IA# dependent on the

interaction potential and is thus more sensitive to 0te

0 ~short range structural distortions accotipienylng shearn

S1
N(t) ievertheless, these calculations e isupport for the-

use of this technique in studying stresses in the norlin-
ear regime.

5 For each normal ten-iorial property T., (e. g., stress,
S=•(t , \, \ ,• ,.recoverable strain, an,. susceptibility) tile direction and

Sao its perpendicular alonge which the minimum and magi-
S* mum value nf that property occur define the minor and

major axes of the tensorial distortion ellipsoid. The

-J smallest angle X between either of these two directions

0 t 2 3 4 5 an.d the x direction is to a first approximation the sc.ne

I fur stress, recoverable strain, and susceptibility. The

FIl(. 14. "i eThe tie dependence el the a compuilleiat ul the expressions

streset (-) and susceptibility ftensora for the p= 1. 266:3 tan"[ 23T,/(T,, - T,3) (25)
systern subjected to the strain rate history. fx0.7721, 0 k (

•L.2, Zu ( 0, 2.2" t 4.4. and

X = tan"(2/A•j/2 (26)

depend (perhaps rather strongly) oil system size. If this are readily derived and predict that for the states stud-

is indeed the case. one might find that the discrepancies ied X differs little from 45*.

between the measured changes and those calculated
from Eqs. (20) and (21) are artifacts resulting from the 111. CONCLUSIONS

small size of the MD system. We have performed nonequilibrium molecular dynam-

Experimentally, the stress produced by large ampli- ics calculations on Li fluids with the aim of gaining in-

tude s-trains can be measured using the optical technique sights into the mechanism of liquid failure at high levels

of birefringence. 12 A fundamental assumption of the of shear stress. The shearing action has been found to

analysis requires that the stress and susceptibility ten- change the liquid structure so that there is a tendency to

sor S respond in a fixed ratio to the shear strains. In stratify along the lines of shear, enabling flow to take

order to test this assumption the components of s, place more easily, The resulting increase In fluidity is

i. e., evident in the enhanced self-diffusion coefficients and

3aia -2the rate of decay of the relaxation functions relative tor•f • 3all _ri

S --- • (22) the unsheared parent system. In other words, the fluid
V *J A, has a shorter memory of its past behavior.

and The structural distortions giving rise to the shear
4 "stress changes are relatively small and are to a large

S4 V (2) ".extent decoupled from other structural changes. They

can be characterized using a first order perturbation
have been calculated. In Eqs. (22) and (23), a is the expansion from the equilibrium structure. The only

molecular polarizability, which is assumed to be equal nonequilibrium parameter needed is a recoverable shear

to oa here. A stress-optical coefficient Ce is defined to strain which is given to a good approximation by the

be shear stress divided by the shear rigidity modulus. Un-

C0 = S,./ 2 utnn ,24) fortunately, we do not understand how to formulate the

mechanism by which the shearing changes the other
where n@ is the refractiv' index of the medium. The aspects of the liquid's structure, which undoubtedly has
stress-optical coefficient is found to be cc /G. for many a strong influence in determining the recoverable shear

materials. 13'1 In order to test this assumption, o.,(t) strain. Model predictions of "bulk" property changes,
and S,,(t), taken from the p= 1. 2063 and i,.= 0. 7221 e.g., in configurational and normal pressure compo-

- regmented calculation, are shown in Fig. 14. Even un- nents, are similarly only at an elementary stage of de-
der these highly nonlinear conditions this proportionality velopment.
is obeyed quite welL This is perhaps not surprising
when the similarity of the configurational average for ACKNOWLEDGMENT

each is considered. Table I reveals that C, is relatively
insensitive to shear rate when compared with 17, in The authors would like to express their gratitude to
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Section It. Comparison of viscoelastic behavior of glass with a
Lennard-Jones model system.
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COMPARISON OF VISCOEIASTIC ItRKIIAVIOR OF (iI,A8. WITH A L.NNARD-JONES
MODEL SYSTEM

by

S. M. Rekhson*, I). M. Heye;, ('. ,I. Montrose, and T. A. Litovite

Vitreous State Laboratory
The Catholic University of America

Washinqton, DC 20064
II.S.A.

Viscoelastic properties of a L. inard-Jonea
(L•) model system studied in a ptevious work
were cnmpared with the behavior of inorqanic
and orqanic cIlass-forminq liqui(s and solid
qlasses. In the region of small stresses and
strains both the LJ model system and "real
materials" demonstrate linear behavior.
After adjustment of time scales the strross
relaxation curves for LI model and fused
silica were found to be similar despite tne
16 orders of maqnitude difference in
viscosities of the liqttids.

At high stresses the viscosity of the LJ
model system drops, stress relaxation occurs
faster, and a peak appears in the stress
versus time plots for shearing with A
constant rate. This phenomenon, well-known
for hiqh po'ymers, has also been observed for
inorqanic glasses. The curves, a log 11
vs. log a, that show a drop of viscosity of
RbO - SiO glass and 1J model at stresses
hi her thin 10' Pa, are in remarkable
aqreement. The LI model is shown to provide
a semi-quantitative representation of a
variety of ilass-forminq liquids.

I NTROnUCT ION

lnorqanic qlass-forminq liquids are often uhbjected to severe
manufacturinq and operating conditions. For example, during forminq
operations qiass melts experience shear strains and rates about 105
c m/cm and 106 sec-i, respectively -- enormous values. ral,:ulations
of melt behavior, however, are normally made using experimental data
obtained at strains and rates 10 orders of maqnitude lower. On
lookinq for methods to study the behavior qlass-forminq liquids
subjected to high amplitude disturbances we camne to a .•olovtilar
dynamics (MD) investigation of a model liquid system.

o-w--wt-h- -Cori- ('0., Liqhtinq Business Group, Nela Park,
Cleveland, Ohio 44112.
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Mr is a cotputer saimi itation techniolquo for probintl the micro-)ke.• -
behavior of a system that allows one to ,Account for the many-h.,,n.
nature of the molecu ir intpractionq. It involvon tot lowin; sio:
representative number of molecules, N, by solvine; the classinal
equations of motion on a hiqh ,iped computer to obltain their
trajectories in time iteps a t - t I . Frone thle resul ti of an Mi
experiment -- esentially A record (if th,' system's Jath tletoeell
phase space -- nne can determine' any mrIIIe property oif the,
system, as well an many that are ixpertmentally ilnacc•nsible.

Heyest Kim. Montrose and hitovitr III studied by this methrod the,
model system of 108 Lennard-Jones (M) particles. These "molhtctiteo"
interact through pairwise additive forces described by the I. f6-l.,
potential

*(r) "-4u I(a/r)' - (a/r)'fl, (I)

where r is the noparation of ain mnt'ractinq pair ant ul and I art
constants with dimensions oif enertly and distance respectively. The
method of computer simulation was- shown III to be a very eftective
tectnique for studyinq the behavior of an .1 ¶odel. In this paper
we compare the resutilts obtained for the W system with the btehaviort
of inorqanic and orqanlc qlass-formin.; liquids to assess the extent
to which it can be considered representative of real materials.
Althouqh no real glass-forminq liquid can he characterized by a
potential of the LJ form (only the noble qas fluids Ar, Kr. Occ..
are quantitatively represonted in this way) there may be some
important common features in dynamic'al behavior of liquids whioh ar,'
essentially independent on the chemica, coimposition and the oxt.'nt
of supercoollnq relative to the meltinq point.

SHEAR STRESS REIAXATION, LINEAR P.IIAVIOR

Consider first the linear (small stress and strain) behavior.
Flgure 1 shows the stress response when a rehear strain is switched
on at the instant t - I) and is kept constant.

moe

.6 1.0 1,4

tm 1.0,1042 for L model
timelr 2

.1.ure37.io0 for 8502
A Comparison of the' Normalized Stress Relaxation
Punctions fnr thle T.O Mnut•,l System and SI0)2 ("•."s
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"S"rK5 RFI.AXATIONt NON-LNFNPAR
x9.O33. 10" 5',AV ION

xrIxp-erilents on qtress rrlaxation
for coni•tant strain r imponod at
t - 0 were carried" oOut as a
function of c , There is little

S10 chanqe in the instanteneous shear
riqiiity as a function of t
however, thern is a markad
difference in the relaxation
function, t(t). The relaxation
function in the high initial
"strain case decays more rapidly
to sero at long times. Precisely
the same conclusions were drawn
by the authors [6l who studied

0 0extensively the stress relaxation
in polyisobutylene. Their datd

0 1 2 demonstrate the dependence of the
X2.16 storaqe modulus GI on radian

frequency w for different maximum
t(ps) amplitudes of deformation rate

Figure 2 1max - 9 (where v is the
The Time ependence of frequency)? Increase of I (or
the Reduced Stress, £ for any qiven v) cuts 0 the
o(t)/1, for the LJ model% 1nq time tail of G'(.) function

- - 4.4 1 I01 s0 , similarly to that observed in
... 1.66 10 sit this work for #(t).

. * 3.32 1 lOl1 1-l

VISCOSITY: NON-LINEAR RPHAVIOR

Figure 3 shows experimental data for 4 systems with viscosities
ranging from 10-4 to 1014 Paes. Despite an enormous difference in
structures for all syst..ms we have similar behaviorl that is, a
decrease of viscosity beqinninq at a certain range of values of the
stress. The stresses at which deviations begin are different and
clearly dependent on the details of structure. In this connection
it is interesting to note the coincidence of the curves for
inorganic glass and the IJ model.

STRESSES IN A LIOUID SHEARED WITH A CONSTANT RATP

Typical curves obtained for the 1.J model at small and large I ;re
shown in Pig. 2. The fact that at high I the stress versus time
curve rises to a maximum value and then de:ays to its long time
limiting value is well known for real materials. The curves, quite
similar to ones shown in Pin. 2, were reported for poly(vinyl
acetate) 191 , and other qlass-forminq liquids.

DISCUSSION
I. Experimental evidence is provided to support the ansumption that
there are importanc basic features in viscoelastic behavior which
are common to materials with enormous differences ir. structure.
These are: a) transition from elastic behavior at t b 0 to viscous
flow at larger times. The transition itself can be characterized by
fairly similar distributions et relaxation times for Li model
compared to that of real materials: inorganic qlasses, inorqanic and
organic monomeric liquids. h) In all systems studied similar
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Adjustinq time scales we compare relaxation of stresses (in portiona
of initial stress) in fused silica *,iesn and the WI modal. For Sio
we used the data of Leko and Mescheryaknva 121. Taking into account
the 16 orders of magnitude difference in viAcositios the similarity
in behavior seems to be remarkable. The WL curve indicates that the
stress relaxation in the 1i. mnoe l it asracteri sed by the
distribution of relaxation times. The WJ corvw in rit. I is wel!
approximated by a function of the dOnuhle exponential form

G(t) a C.1 (1 - a) expl-t/ti I + a expl-t/ta Ij . (2)

where G. is the insztantaneous shear ritlidity and a the constant.
The ratio t /t w which in usually considered as a characteristic of
the distrihe6 tin width, is equal to 10. This ratio ir very close to
that fo.nd in most inorganic and organic monomeric liquids 13,41.
For example, for 8,0, /- g1to 9, and for borosilicate glass, T /1 1

Coincidence of the pa1mrameter describing macro-copic behavior does
not mean the identity of microscopic mechanisms. It means, however#
that the varieties of mechanisms are similar in the sense that much
faster mechanisms coexist with slower ones.

VISCOSITYi LITNEASR BEHIAVTOR

The next step in to apply to the L.7 model some of the equations of
the linear theory of viscoelasticity which were proven to be valid
for inorganic qlasses. The equation relatinq the normalized shear
stress relaxation function, #(t), the nhqar rigidity modulus, Z,., to
the viscosity of the material, is

G . 100 dt *(t). (3)

In Ref. [I] n was computed for the LT system in this fashion, i.e.,
using G. and #(t) obtained in the stress relaxation experiment at
constant strain c. Then the experiment on Li model was carried out
to determine the stress response of the system when a constant shear
rate I is initiated at t - 0.

The stress was found to behave as shown in Fig. 2 (see the upper
curve). Again using the linear theory, this response is described
by the form

e(t) - It dt *(t'), (4)

which gives sq. (3) at t o(t+%)/1 G G1 Jdt *(M). The
initial slope is G. and the lonq-time value "nC. The shear
rigidity and viscosity determined in this second type of experiment
agreed to within statistical uncertainty with that found in the
first type of experiment. This procedure or similar ones were
carried out for many commercial silicate glasses 151 to show that
they behave as linear viscoelastic bodies at low stress and strain.
Thus the Wi model is quite representative of many real materials,
the behavior of which at low amplitudes, is described by linear
theory.
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non-linear effects were observed at higher amplitudes of shearing
strain or stress.

0b
* LJ I Iquid
U LJ glass

C. - 5%

2-2

2 4 6 8
logo (Pa)
Figure 3

Viscosity as a Function of Stress for Several Liquids and Glass-
(the data for Rb O-SiO glass was obtained by Li and Uhlmann [7]

the data for joiymei solutions are given by Ferry in (81).

2. The drop of liquid viscosity with increasinq stress or strain
rate seems to be a general phenomenon; it occurs in all liquids
studied under shear, uniaxial extension and compression, and in some
liquids even under hydrostatic pressure.

All viacoelastic functions and parameters as defineq. refer to
isothermal changes of state. At the same time tie enerqy,
dissipated during viscous flow may heat the sample. The work of
viscous sheartng heating is W - at - alt - o2 t/r), which indicates
that the dissipated energy increases as o2. Therefore, the control
of constant temperature of the sample is an important feature of the
measurements of viscosity as a function of stress. While it is a
difficult problem in some "real' experiments is was fairly easy to
keep constant the temperature of the "sample" during MD experiments.
Thus, the factor which might be conbidered as a reason for the drop
in viscosity has been excluded. T.-rge deformations are likely to
produce distortion or reorganizdtion of the system's structure.
Evidence supporting this hypothesis was obtained in Ref. Ill by
defining and measuring a set of planar distribution fun,:tions for
the LJ model system. The representation of the modified structure
is sketched in Piq. 4 (neglect at first the line connectinq the
center of the molecules).
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From this one can see the nature
of the structural reorganization
that has occtrred, the system has

unhe ,•tirrinqod it , If into layers
aligned with the flow direction.
The connection of the center of
the molecules by the line gives an
impression of the analogy in the

sheated behavior of simple liquids and
polymers of hilh molecular weight.

SFigure 4b shows the influence ofe% ON shearinq upon the two polymer
chains with entanglement couplinq.

a b The nature of stress or strain
Figure 4 induced structural rearrangements

A Pictorial Representation is still quite speculative.
of the Structural Changes Figure 4 gives one of the possihlu
Under Influence of Large pictorial interpretations of the
Deformations in Simple Liq- similarity in behavior which hla-;
uids (a) and Polymers with been found in this work for th.-
Entanqlement Coupling ;b). materials with different stkiL-

tures.
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ABSTRACT

A molecular dynamics investigation of the microscopic

behavior of simple liquids subjected to shearing conditions

similar to those found in elastohydrodynamic rolling contacts is

outlined. The behavior of a model liquid and more complicated

traction fluids at high levels of stress are strikingly similar.

The calculations give insights into the structural origin of

shear failure and reveal a restructuring of the compacted

material into layers, which significantly. reduces its shear

viscosity. This change is also manifest in an increase of bulk

pressure and decrease in high frequency shear rigidity modulus

and thermal conductivity. Thermal effects in the nonlinear

region of viscosity are consistent with standard macroscopic

theory.
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can be done by appending tie idea of a limiting shear stress to

the low amplitude, i,, linear, shear response. In order to

test this hypothesis and, more generally, to provide a framework

on which to base analytical representations of lubricant

viscoelastic behavior, we have undertaken a Molecular Dynamic3

(MD) investigation of a model liquid system under con! tions

approximating those found in an EHD contact. Even though the

model system is particularly simple, one can expect to reproduce

the major features of shear characteristics of real lubricants.

Then, because an MD experiment provides one with a complete

microscopic record of the system's evolution in time, one can

"measure' aspects of its behavior that are not accessiL'e in

conventional experiments, but which provide useful insights into

the origin of the properties of liquids under the above extreme

conditions.

The ND calculation procedure follows rather closely that

pursued in certain model calculations of the contact (31 in that

we observe a portion of liquid as it is sheared. This is

equivalent to concentrating on a OsliceO of lubricant as it

traverses the region of contact. Although a simultaneously

applied time dependent pressure and shear rate could have been

studied, we have confined our attention at this stage to

considering the response of a model fluid to a time varying

shear rate at a series of dernsities (pressures).

~3



INTRODUCTION

In several recent papers Bair and Winer 11,21 have examined

the problem of understanding the shear stress response of

liquids in concentrated contacts with particular attention to

the possibility of predicting elastohydrodynamic (EHD) traction

data. They point out that, under the severe conditions to which

the lubricant is subjected -- large shearing rates and large,

rapidly varing normal pressures, there is a dearth of primary

laboratory data on which to base a physical model of the

lubricant's behavior. In a series of well conceived

experiments, they have attempted to remedy, at least partially,

this situation. Using their data, they were then able to

develop a physically appealing phenomenological model cf the

non-linear shear response of liquids that is reasonably

successful in predicting EHD traction results.

In order to predict traction, one must be able to compute

the average shear stress in the contact, which is equivalent to

knowing the time evolution of the stress in a fluid element as

it moves through the contact zone, where it encounters a

simultaneously applied steady shear rate and a time varying

pressure. The response of the system under these conditions

can, for low shearing rates, be parameterized in terms of the

shear viscosity, q, a shear rigidity modulus, G., and a

distribution of relaxation times. At the rather large shearing

rates generally encountered, this relatively simple description

must be modified to incorporate the non-linear character of the

dynamical stress response. Bair and Winer (21 suppose that this
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TIHE MODEL

MD is a computer simulation technique for probing the

microscopic behavior of a system that allows one to account for

the many-body nature of the molecular interactions. It involves

following some reprisentative number of moleicules, N, by solvinq

the classical equations of motion on a high speed computer to

obtain their trajectories in time steps of typically 0.01 ps

[41. Since only a rather a limited number of molecules is

treated (generally less than a thousand), the molecules are

confined to remain in a cubic box which is surrounded by images

of itself to avoid severe boundary effects. In many

circumstances the artificialities introduced by this procedure

ate rather insignificant. From the results of an MD

"experiment" -- essentially a record of the system's path

through phase space -- one can determine any measurable property

of the system, as well as many that are experimentally

inaccessible.

The model system under investigation is an assembly of 108

Lennard-Jones (W) particles; these molecules interact through

pairwise additive forces described by the LJ 6-12 potential,

*(r) - -4u [(a/r) 6 - (a/r)12j, (1)

where r is the separation of an interacting pair, and ti and a

are constants with dimensions of energy and distance,

respectively. All the computed quantities are in so-called ii

reduced units which are (liven in terms of u, a, and m, th,! mastS
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of an individual particle. Although no real lubricant can be

characterized by a potential of the LJ form (only the noble gas

fluids Ar, Kr, etc., are quantatively represented in this way)

their structural and dynamical behavior can be expected to be

qualitatively similar to that of the model fluid. As a result

one can expect that the microscopic insiqhts derived from MD

experiments will serve as useful guidelines for understanding

and modeling the behavior of real lubricants and perhaps for the

"molecular engineering" of improved liquid traction fluids and

lubricants. For the purpose of comparison with experiment

frequent conversion from reduced to *real" units will be made,

using the parameters for Ar which are given in Table 1.

Two methods of shearing the box of molecules were adopted.

The results of each method agree within statistical error;

however, each method is well suited to examine a particular

aspect of the investigated phenomenon.

The first method attempts to mimic the enviroment a

lubricant experiences in EHD rolling contacts, in which the

fluid forms a thin, almost parallel film of length 400pm and

thickness lpm, typically under fully flooded conditions. This

thin film is achieved in the model system by employing

periodicity in the x and y directions only, so that an

infinitely thin film is simulated 15). The moving rollers are

replaced by two fluid layers translating with the desired

velocities, U1 and U.. Molecules from the three regions are not

allowed to mix and are kept from doing so by reflection boundary

conditions in the z direction, which are discussed in detaii
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elsewhere [5i. The fluid walls (FW) are maintained at a preset

temperature by adjusting their velocities at each time step of

the integration scheme. The main features of the model are

pictorially represented in Pig. 1.

The second method is a modification of the Homogeneous

Shear technique 141 (tHS), which is better suited to study the

viscoelastic behavior of the fluid because it employs

periodicity in all directions so that a bulk material is

sheared. It also enables a desired strain rate to be

instantaneously achieved throughout the liquid. The molecular

trajectories are disturbed from those governed by equilibrium

fluctuations by imposing a shear strain rate, i, on the. system.

This is accomplished by displacing the x-cooedinate of the i'th

molecule in the MD cell by an amount 6xi = iziAt, where zi is

the z coordinate of particle i and At is the length of the time

step, for as long as the shearing is required. The results of

this technique, in particular those relating to viscoelasticity

(derived using a time dependent strain rate), complement those

of the PW method.

We have used non-equilibrium MD experiments to investigate

the linear and non-linear shear response of the LJ system under

.a variety of thermodynamic conditions. The temperature, T, and

number density, p, initially studied were close to the normal

freezing temperature, T0 , of the LJ liquid, that ia, 0.722 kBT/u

and 0.8442 Na 3 /V, respectively. Densifications of 10%, 20%, and

50% relative to the starting density were achieved by suddenly

(within one time step) compressing the system at constant

35

~ - ~ -~ . -



temperature. The densifications were achieved so rapidly that
the systems were kinetically prevented from crystallizinq. The
reducedS number densities of the other states considered are thus

0.92862, 1.01304 and 1.2663.

Each calculation was undertaken for a duration of at least

30 reduced time units (65 ps). The computations were carried

out on a PDP 11/40 computer.
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RESULTS AND DISCUSSZON

We first consider the , dependence of shear viscosity on

shear rate in the non-linear region.

In the MHS method a uniform x velocity profile was set up

instantaneously whereas a period of several time units was

required for the fluid walls to drive the central region into

this state. An x velocity gradient was achieved by maintaining

the uppeL and lower walls at velocities of U and -U,

respectively. It is relevant here to mention that at all

densities and shear rates considered, the fluid film sheared

uniformly in the z direction without slip at the walls, and not

concentrated in the center as has been speculated before [6i.

An example of a vx(z) so derived.from the p m 0.8442 and • =

0.3373 calculation is shown in Fig. 2. The value of

corresponds to an extremely large shear rate -- on the order of

1010a-1 depending somewhat upon the particular values of u, a,

and m that are chosen. Such larqe values of Z were chosen since

it is desirable to explore the system's behavior at shear rates

on the order of the reciprocal of the viscoelastic relaxation

times. For the LJ fluids these are approximately unity (about

10-12 s). The shear stress needed to define a shear viscosity

is readily derived from the velocities and positions of the

molecules, The aB component of the stress tensor is defined

below,

N NN
ap (/V) [ mv~vj- (ijij/rij)2-0-- (2)

2 ujji,/r --) '
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where V is the volume of the MD cell, vj is the Q velocity

component of molecule i relative to the average velocity and aij

is the a component of the separation between molecules i and J.

The subscripts for the shear stress component, aOx are dropped

in further discussion.

At low shear rates (AU/h) plots of traction versus slip are

linear, however at hign stress levels ( CG./100) the traction

increases less rapidly than slip speed. In other words the

shear viscosity (a a/c) decreases from the equilibrium value of

n,, with inreasing shear rate. The MHS method was used to obtain

n versus 1 for a variety of densities. The forms of n/no versus

stress in Fig. 3 resemble closely those obtained from twin-disk

e2:periments for the fluids SP4E 71t, L63/1271 [8) and Oxilube

8V•/140 (9) after making the appropriate conversions to real

units. The ratio q/i 0  descends markedly from unity in the

region - 5OMPa. The det'rease in q with ' is not due to thermal

heating because the calculations were conducted isothermally.

Another method of presenting the behavior, login/no0  vs.

log[ifr, where T is a characteristic shear relaxation time (a

n 0/Ga), again shows marked quantitative similarity between the

model fluid and a real fluid, which is in this case 5P4E 12).

These results suggest that the model and real liquids might

share a common mezhanism of fail ire at hiqh levels of shear

stress. With the support of the o •.-vious results we now discuss

associated changes in the fluids which until now have only been

speculated upon.
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These high stresses cause extreme distortions of the

system's structure. The intermolecular forces are not

sufficiently strong to support the enormous stress levels that

developi consequently there is a rupturing and reorganization of

the structure resulting in enhanced flow behavior. Evidence

supporting this hypothesis was obtained by measuring the number

density in the a direction between the fluid walls. The density

profile of Fig. 5. derived for p - 1.01304 and £ - 0.3584

suggests the form of this structural reordering. The molecules

align themselves into "glide* planes along the line of shear. A

pictorial representation of the structure suggested is given in

Fig. 6. This layering was not observed when the walls were

stationary or moving in the same direction with equal velocity.

In this context it is relevant to note that IR studies of flow

under bHD conditions have also been interpreted in terms of

molecular alignment along the line of shear [I0.

These structural rearrangements are also manifest in

changes in the so-called normal pressure components , Poe (-

-a..). Typically# Pzz > Pxx > Pyy although their differences

are small when compared with each component's change on

shearing. The zz pressure component increases are shown in

Fig. 7 and predict an improvement in the load carrying capacity

equivalent to -0.SGPa at most.

It is now widely accepted that knowledge of the

viscoelastic response of lubricants is necessary to interpret

EHD results over the range of possible operating conditions 191.

:9
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In order to better understand non-linear viscoelasticity the MD

calculations were conductedtwith a time varying strain rate.

We consider the dynamical response of the U, material to an

imposed shear that is "switched on" suddenly using the mHS

method. Two types of MD experiments are of interest: (a) the

response of the system to a steady shearing rate (uniform

velocity gradient) 1 a 3vx/8z that is initiated at time t 0 0;

and (b) the response of the system to a constant shear strain (a

pulse of shearing rate) imposed at time t - t'. Linear response

theory provides us with relations between the two types of

responses: the shear stress response to a step of shear strain

can be written as

o(t)/c = G.(t), (3)

where #(t) is the normalized (#(0) a 1) shear stress relaxation

function. In terms of these parameters the shear stress

response to a *small" steady shear rate imposed at t a 0 is.

o(t)/i - G,, ft dt' *(tl). (4)

Since the steady state (t * a) value of this is just the

viscosity of the material, no, we have,

n- G.. J dt' (ti) - C.T. (5)

The last equality serves to define the shear relaxation time T.
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Experiments of the type described as (a) above were then

carried out as a function~of Z for values of i well beyond the

range for which linear behavior can be expected. A

representative selection of the results is dirulayed in Figs. 8

and 9 in which the density (constant i') and shear rate (constant

density) dependence of n are shown, respectively.

Several features of these figures are worthy of comment.

At short times the system behaves largely as an elastic solid in

that the stress increases linearly with time,

oat) - M~et.(6

The shear rigidity modulus rises linearly with pressure at

roughly the same rate as more complicated fluids, as is revealed

in Fig. 10. Liquids cannot permanently support a shear strain

and consequently the stress levels of f to a value determined by

the shear viscosity of the sheared state.- There is evident

"shear thinning,* or a decrease of viscosity with increasing

shear ra te. The predicted value of the stress build-up for the

p - 0.92862, i-0.6963 state using equation (4), shown in

Fig. O, clearly overestimates the actual stress obtained.

Also, a maximum in the stress versus time curve for those

simulations in the high density/shear rate regime is observed.

This indicates that the large shear deformations are producing

structural distortions which lag in time somewhat behind the

growth of the shear stress but follow rather closely the

observed time variation of the normal press~ure components in the
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material (see Fig. 11). This relatively slower development of

what can be thought of as transient stress-induced glide planes

is consistent with the observed shear thinning and stress

"~overshoot" behavior presented. it is also consistent with the

observation that the stress relaxation function decays more

rapidly in a highly sheared system than in an equilibrium

system. A comparison of the two types of behavior is presented

in Fig. 12. The form of these *(t) consists of a rapidly (t <

0.2) decaying portion which is presumably inertial in origin and

due tc small motions of the molecules within the random network

Structure. Further stress relaxation requires the cooperative

rearrangement of larger molecular groups and is consequently

slower. The attenuation of #(t.) with increasing shear rate is

indi'iative of the enhanced stress relieving properties of the

structurally reorganized system. The stress overshoot observed

in non-linear viscoelastic experiments on polymers [11) has a

form that is quite similar to the curves obtained for the LJ

system. While the microscopic mechanisms for the two systems

are obviously quite different, the general principle that

associates the stress overshoot phenomena (as well as shear

thinning) with a time dependent structural reorganization

process remains quite valid.

In this context it is perhaps rele~int to note that a more

rapid decay of the stress relaxation function can be thought of

as both a suppression of the long relaxation times associated

with stress relaxation and also a reduction in the shear

rigidity modulus, at low frequencies, G, (a rather well known
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p'henomenon in polymeric systems [121). it is found

experimentally that the extracted shear rigidity modulus of the

liquids confined in concentrated contacts is up to an order of

magnitude smaller than those obse~rved obtained from independent

laboratory (ultrasonic) measurements at the same temperature and

pressure. The large shear rates (- 1O4S-1 ) that exist in the

inlet zone, even under "pure rolling" conditions,, could be

sufficient to reorder the liquid preferentially along the line

of shear. The observed increase in shear modulus with rolling

speed [13] for a wide range of fluids is particularly

significant evidence for this interpretation because if

molecular orientation of the molecule along the line of flow is

the cause of this phenomenon then it would be expected that the

madulus would increase with rolling speed because there is less

time for molecular rearrangement to take place.

Thermal effects are a major factor in limiting the ability

of a fluid to sustain a shear stress at high strain rates [6).

The FW technique is well suited to determine the validity of

using standard macroscopic theory on thin films. Prom

conservation of energy considerations the temperature profile

under conditions of steady shear flow as given by [141 ,

K 82Ti- n i 2/(pC), (7)
a Z2

where K - X/(pC), and A and C are the thermal conductivity idI~

specific heat, respectively. Assuming a temperature independent

shear viscosity then the solution to equation (7) is
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T(Z) - T(0) - O 2 z 2 /(2A), (8)

A typical temperature profile, taken from the p - 1.01304

and 1 - 0.3584 state, is shown in Fig. 13. All the temperature

profiles can be fitted rather well to the above form which is

parabolic in z and hence can be used to estimate A. Note that

these macroscopic equations only apply to a steady state viscous

material and do not apply under viscoelastic conditions where

some energy is stored as potential energy and is not dissipated.

The density and shear rate dependence of A is given in Fiq. 14.

The trends are consistent with the general behavior that thermal

conductivity decreases as a material becomes more fluid-like.

I
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CONCLUSIONS

We have performed non-equilibrium molecular dynamics

calculations on LJ fluids with the aim of gaining insights into

the mechanisms of liquid failure at high levels of stress such

as is found in EHD contacts.

The model liquids "rupture" at similar stresses to those of

more complicated real fiuids due to marked structural reordering

into layers. Paradoxically, alttough structural aspects of the

liquids present a more solid-like appearance, other more

dynamically related properties such as shear viscosity and

therimal conductivity manifest changes which are associated with

enhanced fluidity.
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Table I

A summary of che reduced units in terms of which all quantities are

given. Boltzmann's constant is denoted by kB.

Quantity Reduced Unit SI Unit for Ar

distance a 0.3405 nm

mass m 6.64 x 10-26 kg

energy u 1.65 x 10-21 j

time a(m/u) 1 / 2  2.16 ps

density a- 3  42.1 kg mol/m3

temperature u/kB 119.8 K

pressure, stress u/a 3  41.8 MPa

modulus u/a 3  41.8 MPa

viscosity (mu) 1 l 2 /a 2. 9.d3 x 10-5 Pa s
thermal conductivity kB(m/u)-/ 2 -2  1.88 x 12 2  -

•MU -1 2 1 18 {- - - -

SIV- 
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Captions to the F'iqures

Fig. I A pictorial representation of the relationship between

the FW MD technique and an EHD contact. The encounter

of of molecules with the reflection boundarieF in the z

direction and periodic boundaries in the x and y

directions are illustrated.

Fig. 2 The z dependence of the average x velocity for the p

0.8442 and • = 0.3373 state using the FW model. The z

coordinate system is measured from the center of the

film.

Fig. 3 The non-linear behavior of: A BP L63/1271 (81 (P - 0.8

GPa, T a 27,C, U - 1.12 m/s), 0 5P4E [7) (P r 0.45 GPa,

T - 27*C, U - 0.6 m/s) and 9 Oxilube 85/140 (91 (P - 1.2

GPa, T - 300C, U - 2.2 m/s) from twin-disk experiments.

The MHS model: A p = 0.8442, V p - 0.92862, 0 p

1.01304 and open square p - 1.2663.

Fig. 4 The non-linear behavior of: 5P4E [2) r - 9 x 10-3 s from

experiment. The filled in: A p - 0.8442, V p - 0.92862,

O p - 1.01304 and square p - 1.2663 from MHS MD. The

relaxation times, T, are: 0.12, 0.30, 0.43, and 1.62,

respectively.

Fig. 5 The density profile from the p 1.01304 and • = 0.3584

FW calculation.

Fig. 6 A pictorial representation of the structural changes

that take place on going from an unsheared (a) to i

sheared (b) state. The arrows denote the line and plane

of shear.
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Fig. 7 The variation in the zz normal pressure conponent for

the MHS systems. A p = 0.8442, V p - 0.92862, o p -

1.01304 and square p = 1.2663.

Fig. 8 The time dependence of the reduced stress, a(t)/1:

p = 0.8442, Z0 * 0.6745; -... (a) actual ... (b)

predicted using equation (4) p - 0.92862, #0 - 0.6963;
p - 1.01304, i0 - 0.7168; - p a 1.2663, i0 a

0.7721. The associated strain rate variations are

indicated above the figure.

Fig. 9 The time dependence of the reduced stress, o(t)/! 0 , for

the p - 1.01304 state: - - 0.0896, ..- 0

0.3584, .... 10 = 0.7168.

Fig. 10 The pressure dependence- of G.: a Santotrac 40 (9]; 0

di(2-ethylhexyl) phthalate 191 from a twin-disk

apparatus. Solid line G. - (0.293 + 1.70P) GPa

di(2-e)phthalate [151. The filled in 0 are obtained

from MHS MD.

Fig. 11 The time dependence of the normal pressure components

for the p - 0.92862 and 10 U 0.6963 state: ....

Pzz(t), - Pxx(t), and ---- PYY(t).

Fig. 12 The shear stress relaxation functions for the p - 0.8442

£ - 0 and ---- 0.6745. The step in strain (c

3.0 x 10-3) at t - 0 is illustrated above this figure.

Fig. 13 The variation in temperature in the z direction for the

p - 1.01304 and I 0.3584 state where To - 0.722.
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ji(j. 14 The effect of non-linearity on thermal conductivity (W).

The symbols refer to the same calculations as for

Fiq. 7.
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Section IV. A theory of non-linear response in liquids and amorphous
solids.

by C. J. Montrose
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A THEORY OF NONLINEAR RESPONSE IN LIQUIDS

AND AMORPHOUS SOLIDS *

by

C.J. Montrose
Vitreous State laboratory

The Catholic University of Amern..,
Washington, D.C. 20064

ABSTRACT

A mathematical model of nonlinear viscoelastic stress relaxation is derived

using heurisj:ic arguments relating shear response to dynamical strain induced

structural changes in the material. A parameter characterizing the limiting

steady-state shear stress appears as a central feature of the model. Guneral

formulae are presented and some representative specific cases are considered. The

predicted behavior is in qualitative agreement with both MD and "real"

experimental observations.

This work was supported by the Office of Naval Research (Contract No.
N00014-81-K-0296).
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The shear stress response at time t to a chear strain rate history imposed

over the time interval 0 to t is given for small stresses by the linear convalution

integral form
t

O(t) I Idt' Go(t-t1)Wt1). (i)

In this a(t) is the shear stress at time t, i(t') a dc/dt' is the shear strain

rate, and Go(t-t') is the shear stress relaxation function. In terms of

this last, one can obtain the usual shear viscoelastic parameters of the material:

(1) The instantaneous shear rigidity modulus is just the value of Go at

the zero-value of its argument, i.e.

Go0 (o) - G. (2)

We make use of this to define a normalized shear stress relaxation

function g%(s) - -

GO(s) _ G.go(s) (3)

(2) The shear viscosity is the Integral of the relaxation function GO:

no - ids Go(s) (4)

(3) The shear relaxation time is the integral of the normalized relaxation

function:

To - Ids g0(s) - 0 1/GC , (5)

the second equality following from the use of Eq. (3) in the first.

That the relations expressed in Eqs. (2) - (5) are appropriate can be seen by

considering a few special strain-rate histories.

Consider first a step of strain Ac0 switched on at the instant of time - 0+.

The shear strain rate is i(t') - Ac 0 8W(t') and from (1) the stress respons is

0(t) - AcOcO(t). (6)

At the instant t-0, this gives the instantaneous elastic response. Thus, GO(O)

is indeed the instantaneous shear rigidity, C.
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In a similar fashion, we may examine the response to a steady strain rate

t0 switched on at time - 0+; here the stress is given by

t t
a(t) - iotdt' G0 (t-t') - iotds Go(s), (7)

the second equality following from substituting t'-t-s in the first. The

steady-state viscous behavior is found by taking the t - limit:

U(t + ®) o0ds Go(s) .8)

The ratio a(t + -)/ý0 is the usual definition of the viscosity in agreement

with Eq. (4).

The results and formulae ju.t given are the usual viscoelastic equations

for ti-e linear response of a system when the stresses and strains (and strain-rates)

are small. The purpose of this paper is to develop formulae analogous to these

which can be used in situations of large stresses and strains, and which will

of course reduce to these in the appropriate limits. The paper consists of two

main parts: in the first a heur-*stic approach is used to derive a generalized

stress response formula analagous to (1) and to use this to define effective, i.e.

strain-rate dependent, moduli, viscosities, and relaxation times. The behavior

for some particularly simple impressed strain rate histories is examined. In

the second part, specific forms (based roughly on the MD results obtained in this

laboratory') of the relevant shear and structural response functions in the

theory are assumed. The consequences of these are worked out and the resulting

behavior is compared with some existing experimental work.

THE N'ON-,INF R &N

In generalizing Eq. (1) for the case of finite amplitude shear rates, we

assume that the same form can ba used if explicit allowance for the dependence of

(and dynamic response of) the stress relaxation function on strain rate is made.
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Specifically, it is assumed that the stress relaxation function depends upon the

structural configuration of the material, which, in turn, responds to the impressed

shearing rate. The shear stress is thus expressed as

t
a(t) = fdt 0 C[t-t 0 1t,ý]j(t 0 ). (9)

0

The form of G for a giver, shear rate is taken to be

G[t-toIt,ý] = Go(t-to){1 - Xfdt 1t(tl)F[t-tljt,j]}. (10)
0

where F is the structural relaxation function (explicitly time shear rate

dependent) and is a "strength of coupling" parameter, for which a more physical

interpretation will be given below. The structural relaxation function is

assumed to depend on the material configuration in the same manner as G, that is,

we take
t

F[t-tilt,tJ =1fo(t-ti){l - Xfdt 2ý(t2)F[t-t 2it,•]). (11)
0

Combining (9)-(11) gives for the shear stress

t t t
a(t) = fdt 0o(t 0 )G0 (t-t 0 ) - Xfdt 0 (t 0 )G 0(t-to) fdtl•(tl).f 0 (t-tI)

0 0 0
t t t
fdt0•(t 0 )00(t-t0)fdt,;(t 1 )# 0 (t-tl)fdt 2 '(t 2 )F(t-t 2 lt,4) (12)

0 0 0

Repeated use of Eq. (11) in (12) leads to an infinite series form for the stress:

t M ta(t) = 'dt0i(t0)G0(t-t0) y(- Il t' (t')f0(t-t')jn (3

0 n=0 0

It should be appreciated that the form in (13) can be obtained more formally

from the general Green-Rivlin integral equation, 2

t t t
a(t) = fdt 0o(t 0 )C 0 (t-t 0 ) + fdt 0 k(t 0 )fdtjt(t,)Gl(t-t 0 , t-tl)

0 0 0

t t t
+ fdt 0o(t 0 )fdtl(tl)fdt 2 6(t 2 )G 2 (t-t 0 , t-tl, t-t 2 ) +. ..... (14)

0 0 0
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!y assuming that the nith order response function is factorizable as

Gn(t._t0, ... t-tn) = O0(t-t0) (-X)nf0(t-tl)f0(t-t2) ... f0(t-tn). (15)

With the usual restrictions on the summand, the series in (13) can be

summed in closed form; the result is
t
fdt0• t0)G0 (t-t')

0
(t) = . (16)

1 + Xfdt't(t')jO(t-t')
0

Eq. (16) is the fundamental dynamical result of this paper. Note that without

any loss of generality we may assume that -fo is normalized as

So(o) 1, (17)

absorbing any other factors into the coupling parameter X, This also implies

a definition of the structural relaxation time rs as

T f idt'j,(t') (18)
0

Eq. (16) can now be written in terms of somewhat more physical quantities by

examining the steady-state (t -+) form predicted by this equation when a steady

shear rate

f0 (t<O)
(t>0)(19)

S(t o)

is applied. The result Is

0(-) -oToG./(1 + ý,ATS) (20)

For large shear rates this becomes

-~.) 4 t,'O•'s- * ; (21)

a* is seen to be the maximum steady state shear stress that can be sustained by
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the system. Eq. (16) can now be cast as

tC.fdt Oi(tO0 g0 (t-t0)

,(t) - (22)

1 + To(G,/o*1 Idt'(t )fo(t-t')

By considering the strain rate history given in (19) it is possible to define an

effective shear-rate-dependent viscosity

(Y (23),n(ýO) = (-MO ;(3)

the form of this is easily found by substituting the second equality in (21)

into (20):

G.Tg (24)

n(E 0 ) - 1 + (T)0 Oda

This is sketched in Fi.oure 1. An effective rigidity modtelus can also be

defi-ned by considering the ittstantaneous stress developed upon application of

a step in strain Ac0. Here we obtain

G(Aeo) S ao(O+) .- Gw (25)

AcO I + Aco(G=TO/ TO)

In the sample computations presented in this section we have used the

following typical functional forms and parameter values:

A. g0 (t) - a exp(-t/Tl) + (1-a)exp(-t/T 2 )

a -0.9

T2 /T 1 m 9

T,) 'r2/5
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t 2)

Ts

C. " Co/o* = 10

Figure 2 presents computations using these functions and parameters in Eq. (22)

for the strain rate history given in (19). Observe that both the stress overshoot

and shear thinning effects observed by Heyes et a1 1 (section I of this report)

are reproduced. As expected, these effects become more pronounced for large

values of the reduced strain rate.

We have also examined the behavior when a step of strain Ac0 Is switched

on at time = 0. For this case the strain dependent shear rigidity is given by

Eq. (25) and is plotted in Figure 3. The time evolution of the stress is

easily compuced to be

0(t) = -0 + AC0(G.T00 (26)

This is plotted in Figure 4.

As a last case we consider the application of a steady shear rate [see Eq.(19)]

at time = 0, followed by the application of a small (infinitesimal) step of strain

6r imposed at a time t*>'> r, i.e. after the stress has reached its steady state

value. The incremental stress So is calculated to be

6CF(t) 1+0 W O 0 Coc* (T 0 /TS)'f*(t)J; (27)

in this equation, the time variable t represents the time following the

application of the strain increment. From this equation we can define an effective

shear-rate dependent rigidity

60(0) 1 + i T0(G=/U*)(1-T0/Ts)C( -) [ 0 0 L( (28)
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and a shear-rate dependent stress relaxation function

g 0 (t) - iOTO(y./*o*)[gjO(t) - (TO/Ts).fO(t)]

g~t& 0)1 + cOTo (Gw/L*) (l-rO/rs)

This last is plotted in Figure 5. Again there is qualitative ag.reement with the

observations of Heyes et al.1

1

V/
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A MOLECULAR DYNAMIC STUDY OF STRUCTURAL CHANGES

ACCOMPANYING MATERIAL FAILURE: PRELIMINARY RESULTS

by

S. D. Grant and C. J. Montrose

Vitreous State Laboratory
The Catholi.- University of America

Washington, D.C. 20064

I NTRODUCT ION

In a recent paper 1 we reported a molecular dynamics (MD)

study of the nonlinear shear response of stable and metastable

(undercooled) liquid systems. Among the principal results of

this work warn the observation that accompanying, and indeed

responsible for, the reduction in the effective viscosity (shear

thinning) at elevated shear rates is a reorganization of the

liquid structure into laminae approximately aligned with the

shear force. The effect of this is to facilitate flow and hence

reduce the shearing stress that is required to maintain the shear

rate. At the time It was hypothesized that this structural

reorganization could be viewed as the precursor of a material

failure process, the actual fracture of the system being prevented

by rapid molecular diffusion that acts as a local "healing"

mechanism. To investigate this hypothesis we have undertaken

a set of MD experiments on systems that have been rapidly quenched

to low temperatures -- glasses--so that, on the time scale of the

experiments, molecular diffusion is arrested. In this note, we

report some preliminary results of those experiments.
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COMPUTATIONS AND RESULTS

The system under investigation is an assembly of 108 parti-

cles (a few runs have been carried vut on larger systems) inter-

acting pairwise via a Lennard-jones 6-1.2 potential

4cf(a/r)" - (a/r)6].

The equations of motion were integrated using the Verlet algorithm

2
with a time step of about 0.01. The results that we present here

were obtainel at a temperature of 0.10 and a density of 1.01.3.

This state was reached by rapidly (in one time step) "crushing"

a triple-point liquid system (T = .722 and p - .8442) to achieve

a ?0% densification, then allowIng this state to equilibrate, and

finally "quenching" the system (again in one time step) to the

desired temperature. The rapid densification and cooling steps

inhibit those structural rearrangements that are required for

crystallizatio- to occur.

The experiment consists on switching on a shear strain rate

xy at time = 0 3 and examining the subsequent time evolution of

the syetem. The temperature was held constant by scaling the

particle velocities after each time step. Among the system

properties "measured" were the shear and normal stress components

and distribution functions characterizing the local structure,

Typical of the results obtained is the plot of shea- (xy)

stress versus time shown in Fig. 1. As is evident the stress

riaes until approximately t = 12 at which time (when the strain

is about 6%) it drops precipitously to zero. This stress relea3e
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is interpreted as a failure mode of the material; fracture in

the normal sense cannot oct~uz because of the confinement

condition imposed by the density constraint on the system.

This effect was quite reproducible occuring in three separate

runs with ixy = .005 and in one with £ xy = .001. In all cases

the stress release occurs at stresses = 0.6 and at strains of

5% to 6%.

One of the runs with ix = .005 was continued out to t t,75

(Fir'. 2). observe that following the failure at t =12, the

stress, after hovering near zero for a short time begins to rise

at t a20 before dropping at t =42. Note that at this point

the stress has risen to a value more than twice as large as the

level initially required to initiate failure. This growth and

sudden fall of the stress is repeated agair, between t v50 and

t =72.

The time dependence of tne other stress components are

shown for the same run in Figs. 3 through 8.

Accompanying each of the major stress changes are significant

structural rearrangements. These are pictured in Figs 9(a) and (b).

It is evident that the initial stress buildup causes a stratLi-

fication of the amorphous structure; the failure of the system

coincides with a reorientation of these strata. Continued

shearing of the system leads to a "reconstruction" of the material

in which it is reconfigured as a crystalline solid.

This is illustrated in Figs. 10 - 12 where the radial distri-

bution function is given at various time instants. At the later
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time instants the crystalline character of the material is clear;

the positions of the first four peaks in the RDF's are in the

ratios 1, /2, /•, and /T indicating an FCC crystal structure.
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FIGURE 6. The yy-component of the pressure tensor versua time
following the application of a steady xy shear rate
switched on at t - 0.
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FIGURE 7. The zz-component of the pressure tenasr versus tiMe
following the application of a steady xy shear rate
switched on at t,- 0.
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FIGURE 8. The pressure P = (P + P + P )/3 versus time following
the application of XXa stUdy xtzshear rate at t 6 0,
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up).
100



12 r RDF

4-!
2 r

8 '

o

ia S

4,,d

a

0!

FIGURE 12. The radial distribution function of the system at the

time instants 56.5, 64.7 and 73.0 (reading up).
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Non-Newtonidn Viscuuý; Fl1ow in L;GIas

by

Joseph 11. Simmons, Robert K. Mohr, and C. J. Montrose

Department of Physics
Catholic University of America

Washington, D.C. 20064

ABSTRACT

The viscosity of a soda-lime silica glass was measured at

high strain rates. The data show non-Newtonian viscous flow in

this inorganic oxide glass with the viscosity valurs below the

expected Newtonian value. Following the imposition of larqu,

steady strain rates, the observed stress increases with time to

a maximum and then decreases to a time-independent value. A

comparison of the viscosity behavior of this glass with the

molecular dynamics results in a "Lennard-Jones* glass shows a

number of points of correspondence and suggests the interpreta-

tion of the non-Newtonian behavior as resulting from structural

rearrangements in the material. The combined data show that the

sustained, steady-state stress asymptotically approaches a maxi-

mum at very high strain rates. This limiting stress is inteL-

preted as the actual cohesive strength of the material and is

calculated to be 1.4 x 10 8 N/m 2 (20,000 psi) for the glass under

study.
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INTRODUCTION

The strain rate response of non-crystalline materials under

an applied stress has generally been observed to be linear

(Newtonian) for low stress or strain rates. Organic materials

have exhibited large deviations from Newtonian behavior 'Ioth in

tne pseudoplastic direction (below Newtonian viscosity) and the

dilatant direction (above Newtonian viscosity). 1 Since a cor-

respondence between specific structural changes and the non-

Newtonian response has not been determined for these materials,

it has been generally surmised that the non-Newtonian behavior

is a result of complex molecular chain kinetics such as unfold-

ing, stretching, cross-linking, etc.

Recent "experiments" with Lennard-Jones spheres in a glassy

state using molecular dynamics (MD) calculations have also shown

the onset of non-Newtonian behavior under increasing strain

rates or applied stresses. 2 ' 3 The calculations show that when

an applied shear strain rate is imposed on a box containing

Lennard-Jones spheres, the resulting stress is proportional to

the applied strain rate, ', only for low strain rate values

(IT0<<l, where T is the shear isothermal relaxation time in the

Newtonian region). At higher strain rates, the measured

stresses and the corresponding viscosity do not reach their

expected Newtonian value, with the deviation growing for

increasing strain rates. The resulting behavior is shown in

Figure 1. Since in Lennard-Jones glasses the atoms interact

only via central forces, it seems clear that the observed non-

linear behavior in MD calculations is a fundamental property of

the liquid or glassy state.
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Oxide glasses consist of i(on3 which bind with both an ionic

and a covalent charecter. Silicate glasses have not demon-

strated any chain characteristics, and therefore, they offer a

set of materials whose behavior can be compared to MD Lennard-

Jones glasses. Some differences are expected since silicate

glasses exhibit some covalent (directional) bonding. But much

similarity is also expected since a large portion of their

molecular make-up is ionic.

Measurements by Li and Uhlmann on rubidium silicate

glasses4 have shown the existence of a non-Newtonian region in

the viscoelautic response of the glass to an applied constant

load. As is the case for MD glasses, the deviation from Newto-

nian behavior was in the pseudoplastic direction. However, the

dynamics of the non-Newtonian -behavior of the glass were not

studied in detail. We have analyzed their data, and a compari-

son of their results to MD experiments and to our resoilts is

presented below.

In this paper, a stable silicate glass was selected for an

investigation of non-Newtonian behavior. The glass is a stan-

dard reference material for viscosity issued by the National

Bureau of Standards. 5 Its Newtonian viscosity has been measured

at great length and its stability in air at high-temperatures

has been established through nume-cous tests. 5 , 6 , 7

The experiment which we present is conducted differently

from that of Li and Uhlmann, and is designed to reproduce the

conditions of the MD calculations. The experiment is conducted

at constant strain rate rather than constant stress or applied
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load. While these conditions are interchangeable when the

material is exhibiting Newtonian behavior, they are not equiva-

lent when the response is non-linear. Constant strain-rte

experiments were performed because they allow a detailed study

of the non-linear behavior before the onset of material failure.

Experiment

Measurements were conducted on an oxide glass fiber whose

composition is shown in Table I. Fibers were made by hand draw-

ing from the molten glass at 11500C, and had diameters of 0.1 to

1mm.

TABLE 1* - GLASS COMPOSITION

SiO2  70.5% Sb 2 0 3 1.1%

KoO 7.7% ' SO 3 0.2%

Na2 0 8.7% A12 03 , Fe 2 0 3 0.2%

CaO 11.6%

*This glass is known as NBS-710 Viscosity Standard.

Each tested fiber was inserted through a furnace 12cm long with

a narrow central channel and was attached to a stationary fix-

ture at the bottom end and to a moveable load cell at the top

end. See Fig. 2 for a schematic of the fiber and furnace

arrangement. The furnace was designed to yield a relatively

constant temperature over most of its length (t30C over 90mm)

and to drop rapidly in temperature at each end (AT = -200C in

less than 6mm). This guaranteed a constant, well defined hot

zone. At selected temperatures, the fiber was elongated at a
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constant rate while the resulting force was measured. The

measurements were conducted at all the different strain rates

studied before the temperature was changed.

Since the length of hot fiber was fixed by the furnace,

this resulted in a constant applied strain rate. The fiber

diameter was reduced as its total length increased, therefore it

was necessary to calculate a correction for the steady-state

cross-sectional area reduction. Steady-state refers to the con-

dition where the cross-sectional area decreases uniformly over

the entire hot-length of the fiber. This is seiected to differ-

entiate it from localized necking which we shail discuss later.

An exact solution to the steady-state correctl.:, is:

A(t) - A 0 e-!(t't0),

where A0 is the area at to and • is the strain rate. The vali-

dity of this correction was verified by the measurement of the

expected Newtonian viscosity at low strain rates before and

after substantial elongation at high strain rates. Using this

area correction, plots of the variation of developed stress with

time were obtained for different applied constant strain rates.

A typical dependence of sttess on strain rate is shown in Fig.

3. Note the linear region at low strain rates, and the pseudo-

plastic deviation at higher strain rates. The apparent

viscosity n was calculated es follows:

109



n (2)

where a is the developed stress.* F~igure 4 shows the temperature

dependence of the Newtonianl viscosity measured at low strain

rates.

*This is a commonly used definition of viscosity in the Newto-
nian region. The definition of viscosity ýn non-Newtonian
regions becomes somewhat ambiguous arnd others have suggested
that nnl/3(3a/83*) is a more appropriate definition (the twoI
definitions are equal in the Newtonian region). The use of Eq.
2, however allows us to plot viscosity as a function of time at
fixed I and this is more useful for our fixed strain rate exper-
iments. The use of the differential form requires data with
very low scatter to calculate the viscosity with any accuracy
and therefore is not used here.
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Discussion

A. Experimental Results

A study of the non-linear behavior of this glass and a com-

parison with the Lennard-Jones, molecular dynamics experiments

are best effected by looking at the time dependence of the

apparent viscosity for a given applied constant strain rate.

Figures 5 and 6 show the non-Newtonian behavior for two differ-

ent temperatures. The onset of non-linear behavior occurs at

higher strain rates for higher temperatures and lower viscosi-

ties. The slow increase in viscosity to its Newtonian value,

no, at the low strain rates corresponds to shear relaxation

effects in the glass, and the time to reach the steady-state,

Newtonian behavior is proportional to the average shear relaxa-

tion time, T0 a j0/G where G is the instantaneous shear modulus.

As the strain rate is increased, three significant effects

can be observed. First, the apparent viscosity approaches a

steady-state value for long times. This steady-state, apparent

viscosity decreases with increasing strain rate. Second, there

is a short-time overshoot of this steady-state value during the

shear relaxation period. Third, the slower shear relaxation

processes appear to be rhort-circuited by a faster process which

leads to the lowered viscosity. These results are qualitatively

identical to the behavior of Lennard-Jones spheres in the MD

experiment (Fig. 1). This process appears to be a structural

breakdown mechanism and occurs at earlier times for increased

strain rates (i.e. compare the curves with I - 72x 1O-/sec. and

18x lO-/sec. in Fig. 5). It appears that the high strain rates
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ChCa breakdown of the glass structure which in turn allows,

stress relaxation to occur by the faster available mechanisms

rather than the sum of all relaxation mechanisms. Because, the

Newtonian shear relaxation processes and the structural break-

down processes have different relaxation times and amplitudes,

there is an overshoot in the apparent viscosity.

Each set of tests shown on Figs. 5 and 6 was conducted on a

single fiber. The measurements gave the same steady-state vis-

cosity values at each given I whether th,- measurements were made

following a higher or a lower a.Therefore.. the steady-state

viscosity values appear to be independent of past history. In

each figure, the highest 1 value corresponds to & failure of the

fiber. In Fig. 5, the viscosity appears to be approaching

steady-state when failure occurs.

B. Hea ting Effects

It is apparent that the observed non-linear behavior of the

silicate glass fibers is similar to the behavior of the Lennard-

Jones glass. Before a discussion of similarities ard differ-

ences between these two results, it is necessary to establish

that test conditions were similar. For example, in the MD

experiments, the temperature was maintained constant. Therefore

it is r~ecessary to determine whether the silicate glass fibers

were heated above the furnace temperature at the higher strain

rates, and whether the heating, if present, would be sufficient

to cause the decrease that was observed in the viscosity. For

example, the drop in observed viscosity at 5630C from the Newto-

nian value of 3.2 x 1012p to the pseudo-plastic value of 1.1 x
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101 2P (at the strain rate of 7.2 x 1O-4sec-I) corresponds to a

temperature increase of 100C.

A lower limit to the rate of heat loss from a fiber can be

calculated using the radiative heat transfer coefficient, H,

defined for small temperature differences between the fiber and

the furnace as:

H - 4eST 3  (3)

where e is the glass emissivity, S is the Stefan-Boltzmann con-

stant and T is the absolute temperature. The rate of heat loss

dQ/dt is then given by

dO
Ft - AsT (4)

where A. is the surface area of the fiber in the furnace and AT

is the temperature difference between the fiber and the furnace.

Using S a 5.67 x lO-0J/sec.m2 .K4 , T - 836K, and e - 0.9 we cal-

culated a value for H - 1.2 x 10 2 J/K.m2 .sec. This value is an

underestimate of the total heat transfer coefficient since only

radiative mechanisms have been considered. Paek end Kurkjian8

have estimated H from cooling rate measurements made on glass

fibers with similar dimensions as those tested here. Their

estimate yielded H - 2.9 x 10 2 j/K.m2 .sec which is consistent

with our calculation.

A calculation of the rate of doing work on ths fiber was

made to determine an upper limit on any resulting temperature

rise. The rate of doing work is
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dWT = v (5)
dt

where V is the volume of the fiber given by I.A(t). Under

steady-state conditions the maximum rate of heat input due to

conversion of all the work to heat was calculated to be 3.37 x

10-J/sec. Since the surface area of the fiber in the furnace

was approximately 1cm2 the largest temperature rise that could

be supported considering only radiative heat loss is less than

0.03*C. This is far below the value of 100C necessary to cause

the observed non-linear behavior. Therefore, we can reasonably

conclude that the non-linear behavior of the glass during these

experiments was not a result of localized heating of the fiber,

and the test does duplicate the isothermal conditions of the MD

experiments.

C. Mechanism

During the MD experiments, it is possible to arrest the

system and examine its structure. The examinations of systems

having undergone extensive non-linear behavior showed definite

structural changes indicative of a layering effect for planar

shear. The layers appear to form almost parallel to the shear

planes with a small angular deviation from the shear direction.

The angles decrease with increasing shear rates. 2 Real glasses

may also be suddenly frozen by rapid cooling to temperatures

below the glass transition temperature. However, structural

examinations of reaJ glasses on the molecular level are diffi-

cult and cannot be made directly. Therefore, we have not yet

atLempted to gather structural correspondence tor the non-linear

behavior.
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It is possible however, to disc~uss the non-linear behavior

of real, inorganic glasses by comparison with MD results. The

reduced steady-state viscosity (apparent viscosity divided by

Newtonian viscosity, n/n0 ) can be plotted versus stress or

versus reduced strai,.n rate (strain rate times the Newtonian

average relaxation time, CT 0 ) for each temperature. In both

instances, the data reduces to the same general shape, although

it appears to us that the reduction with reduced strain rate is

better. Both inorganic glass experiments and the MD data follow

the same general behavior.

The decrease in viscosity with increasing strain rate

results from an asymptotic approach of the sustained steady-

state stress to a maximum value (alimit) at very high strain

rates. The existence of a limit in the sustainable steady-state

stress indicates that if the system is placed under a stress

greater ithan the limit, steady-state conditions cannot be main-

tained and catastrophic failure ensues. This stress limit,

therefore, can be interpreted as the actual cohesive strength of

the material. This result shows a unique and valuable feature

of the non-Newtonian viscosity studies since the actual cohesive

strength of the material is obtained here without a need to

fracture the material.

A calculation of the limiting stress requires some extrapo-

lation of the data to very high shear rates. In this task, we

rely on the similarity between the measurements conducted on the

soda-lime silica glass and the MD calculations on the Lennard-

Jones glass. The normalized viscosity of both systems reduces3
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to the same curve when the shear rate is normalized through the

function cTo/a where a is an adjustable parameter. The value of

a is found to be 0.0063 for the soda-lime silica glass, 0.0053

for the rubidium silicate glass and 0.071 for tho Lennard-Jones

glass. Reduced in this fashion, all data follow the same beha-

vior, independent of temperature and composition as shown in

Fig. 7.

The fall-off in reduced viscosity at increasing strain

rates, thus appears to result from dynamic changes in the struc-

ture of the material which accompany the large applied strain

rates. Reduction of this data from different temperatures on

the same glass by use of the average Newtonian shear relaxation

time indicates that the structural rearrangement is controlled

by the shear flow processes in the glass.

The functional dependence of the decrease in normalized

viscosity can be obtained from an equation based on the concept

of a limiting stress used by Bair and Winer to discuss similar

behavior for highly viscous organic lubricants. 9 The equation

was derived by Montrose using semi-empirical arguments.10 The

equation yields a simple relationship between reduced viscosity

and the normalized strain rate function, ;T 0 /a:

n = 1 (6)

0 1 + CT0 /a

where the factor a is found to be the ratio of the maximum

stress sustained by the system and the instantaneous shear

modulus of the glass, alimit/G. The fit of this equation to the

data is also shown in Fig. 7.
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is the maximum stress developed in the system under

steady-state conditions as the strain rate goes to infinity

without material failure. Therefore, alim~it represents the

actual cohesive strength of the material. This actual cohesive

strength is interpreted as the maximum stress sustainable by the

material when the stress is applied at a rate slower than the

effective relaxation time of the glass. Its existence suggests

that when viscous or plastic flow occurs under an increasing

tensile or shear stress, there is a stress value where steady-

state flow cannot be sustained and the m~aterial fractures at.the

point where the stress is applied. In the case of loaded

fibers, this result suggests that as the diameter of the fiber

undergoes localized necking, a point is reached when oapplied >

alimit and fracture occurs, rather than continued necking of the

fiber.

In the MD experiments, an independent measurement of

Olimit/G3 was conducted and agrees very well with the value of a

obtained by fitting the non-linear viscosity to Eq. 6.

This generalized behavior of inorganic glasses at different

temperatures and composition is an encouraging basis for the

developm~ent of molecular models to interpret non-linear behavior

in inorganic glasses. The strong similarities to the MD glasses

indicate that the effect is indeed a result of structural rear-

rangements in the glasses. The parameter, a appears to be

linked to the strength of some average structural bond of the

material at the temperature of measurement. Therefore, this

exp-riment offers a direct measurement of the cohesive strength
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of different gl..zses and a possibility for measuring its

temperature d-pendence. The values obtained here show that both

oxide glasses can only sustain stresses about 1/160 of their

shear modulus while the Lennard-Jones glasses can go up to about

1/10 of the shear modulus. This result is reasonable from

structural considerations since the bonding forces in the Li

glass are spherically symmetric, while a significant portion of

the bonding of the oxide glasses is covalent and therefore high-

ly directional. It is expected that these covalent bonds are

much less resistant to shear stresses since they can break by

bond rotation than are the non-directional ionic bonds which

break by bond extension alone. Estimating a shear modulus for

the soda-lime silica glass of 2.2 x 1 0 1OPa, based on high tem-

perature ultrasonic sound velocity measurements, our interpreta-

tion of the reported measurements yield an actual cohesive

strength of 1.4 x 10OPa (20 Kpsi) for this glass at temperatures

near 5601C, and Newtonian viscosities of 10 1 0-10 1 1Pa-s (1011-

101 2Poise).
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SUMMARY AND CONCLUSIONS

The viscosity of a stable, soda-lime silica glass was meas-

ured at high shear rates. The results showed a non-Newtonian

viscosity behavior of the pseudo-plastic type. As a function of

time, the viscosity at high, constant strain rates first

increased to a maximum, then decreased to a constant time-inde-

pendent value, lower than the expected Newtonian viscosity. The

time independent behavior at long times yields a steady-state

viscosity which is a function of the applied stLain rate.

The measurements when compared to molecular dynamic calcu-

lations on a Lennard-Jones material show unexpected similarity

in the time and temperature dependence of the non-Newtonian vis-

cosity. The observed behavior also agrees with earlier work on

a rubidium silicate glass. Comparison of these data indicates

that the time evolution of the viscosity of the silicate glasses

corresponds to that calculated for the Lennard-Jones glasses

which is known to result from a structural rearrangement in the

material under high deformation rates.

An examination of the combined data of the inorganic

glasses and the MD glass showed that the steady-state, sustained

stress under applied constant strain rates approaches a limiting

stress value, alimit, for infinite strain rates. This limiting

sustained stress is interpreted as the actual cohesive strength

of the glass since any applied stress greater than Olimit cannot

be sustained under steady-state conditions and leads to catas-

trophic failuce. The extrapolation of data using a semi-empiri-

cal model showed that a-limit for the two inorganic glasses
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a nalyzed is near )/160 time3 the i igid shear modulus, or

approximately 20Kpsi for the soda linte silica glass. These

results suggest a mechanism for material failure at high temper-

atures (under conditions of plastic flow). By this mechanism,

an applied shear stress greater than olimit induces initially a

plastic flow reaction which changes to fracture when the struc-

ture attempts to adjust to the stressed condition. An applied

shear stress lower than climit induces a plastic flow reaction

which reaches a steady state strain rate as the structure rear-

ranges itself to a.comodate the stress.
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FIGURE CAPTIONS

Fig. I -- Results from molecular dynamics calculations. Shear
stress versus time for the shear strain rates shown at
the right, switched on at time zero. Note the stress
overshoot at the upper strain rate. (See Ref. 2 for
details).

Fig, 2 -- Details of the furnace and load cell as3emblies. The
end heaters, I and 3 were adjusted to obtain a uniform
temperature in the furnace.

Fig. 3 -- Variation of stress versus strain rate for the soda-
lime-silica glass. The deviation from Newtonian beha-
vior is clearly seen for strain rates above 1.5 x
10-lsec- 1 .

Fig. 4 -- Newtonian Viscosity of the measured soda-lime-silica
glass.

Fig. 5 -- Measured viscosity versus time for the strain rates
shown, switched on at time zero. The dashed line is
the Newtonian value.

Fig. 6 -- Measured viscosity versus time for the strain rates
shown, switched on at time zero. The dashed line is
the Newtonian value. .

Fig. 7 -- Plots of viscosity reduced by the Newtonian value
versus normalized strain rates, et 0 for various tem-
peratures. The solid line represents equation (6) and
shows how a reduction of the strain rate by the single
parameter of: G/a(limit) can fit the data from three
totally different materials:

a) Rubidium-silicate data from Li and Uhlmann 4 ana-
lyzed by the method presented in this paper. The tem-
peratures are as follows: open circles - 5280C, solid
trianges - 5550C, open triangles - 5360C, squares -
5010C, solid circles * 4800C.

b) Soda-lime-silica glass whose measurement is des-
cribed here. The temperatures are as follows: cir-
cles - 563*C, diamonds - 5740C, triangles - 5930C, and
squares - 596°C. The two solid points are estimates
of viscosity before failure.

c) Mollcular dynamics calculations on a Lennard-Jones
glass. Here different densities are used to repre-
sent different thermodynamic states. The densities
are in terms of the triple point density, PT: circles
0 IPT, triangles = 1*jPT, diamonds -1.2PT, and
squares 1.5PT.
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